DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director WATER-SUPPLY PAPER 401 # SURFACE WATER SUPPLY OF THE UNITED STATES 1915 PART I. NORTH ATLANTIC SLOPE DRAINAGE BASINS NATHAN C. GROVER, Chief Hydraulic Engineer C. H. PIERCE, C. C. COVERT, and G. C. STEVENS, District Engineers Prepared in cooperation with the States of MAINE, VERMONT, MASSACHUSETTS, and NEW YORK WASHINGTON GOVERNMENT PRINTING OFFICE 1917 # DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Water-Supply Paper 401 # SURFACE WATER SUPPLY OF THE UNITED STATES # 1915 PART I. NORTH ATLANTIC SLOPE DRAINAGE BASINS NATHAN C. GROVER, Chief Hydraulic Engineer C. H. PIERCE, C. C. COVERT, and G. C. STEVENS, District Engineers Water Resources Branch, Geological Survey, Prepared in cooperation with the States 31 06 Capitol Station MAINE, VERMONT, MASSACHUSETTE OF NEW YORK O' Jahoma City, Okla. WASHINGTON GOVERNMENT PRINTING OFFICE 1917 # ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. 15 CENTS PER COPY ∇ # CONTENTS. | | Page. | |--|-------| | Authorization and scope of work | | | Definition of terms. | , 8 | | Convenient equivalents | 9 | | Explanation of data | 11 | | Accuracy of field data and computed results | 12 | | Cooperation | 14 | | Division of work | ` 14 | | Faging-station records. | 14 | | St. John River basin | 14 | | St. John River at Fort Kent, Maine. | 14 | | St. John River at Van Buren, Maine | 16 | | Machias River basin | 18 | | Machias River at Whitneyville, Maine | 18 | | Union River basin | 20 | | West Branch of Union River at Amherst, Maine. | 20 | | Branch Lake near Ellsworth, Maine | 22 | | Penobscot River basin. | 22 | | West Branch of Penobscot River at Millinocket, Maine | 22 | | Penobscot River at West Enfield, Maine | 23 | | East Branch of Penobscot River at Grindstone, Maine | 25 | | Mattawamkeag River at Mattawamkeag, Maine | 27 | | Piscataquis River near Foxcroft, Maine | 29 | | Kenduskeag Stream near Bangor, Maine. | 30 | | St. George River basin. | 32 | | St. George River at Union, Maine | 32 | | Kennebec River basin. | 33 | | Moosehead Lake at east outlet, Maine | 33 | | Kennebec River at The Forks, Maine | 34 | | Kennebec River at Waterville, Maine | 36 | | Dead River at The Forks, Maine | 38 | | Sandy River near Farmington, Maine | 40 | | Sebasticook River at Pittsfield, Maine. | 40 | | Cobbosseecontee Stream at Gardiner, Maine | 44 | | Androscoggin River basin | 46 | | Androscoggin River at Errol dam, N. H. | 46 | | Androscoggin River at Berlin, N. H. | 47 | | Androscoggin River at Rumford Falls, Maine | 49 | | Magalloway River at Aziscohos dam, Maine | 51 | | Little Androscoggin River near South Paris, Maine | 51 | | Presumpscot River basin | 54 | | Presumpscot River at outlet of Sebago Lake, Maine | 54 | | Saco River basin | 56 | | Saco River at West Buxton, Maine | 56 | | Merrimack River basin | 57 | | Merrimack River at Franklin Junction, N. H. | 57 | | Merrimack River at Garvins Falls, N. H | 59 | | Gaging-station records—Continued. Merrimack River basin—Continued. | D | |---|------------| | Merrimack River at Lawrence, Mass | Page
6 | | South Branch of Nashua River basin near Clinton, Mass. | 6 | | | 0. | | Sudbury River and Lake Cochituate basins near Framingham and | • | | Cochituate, Mass. | 6 | | Blackstone River basin. | 6' | | Blackstone River at Albion, R. I. | 6' | | Connecticut River basin | 6 | | Connecticut River at Orford, N. H. | 6 | | Connecticut River at Sunderland, Mass | 7 | | Passumpsic River at Pierce's mills, near St. Johnsbury, Vt. | 7: | | White River at West Hartford, Vt | 74 | | Millers River at Erving, Mass | 7 | | Deerfield River at Charlemont, Mass | 78 | | Ware River at Gibbs Crossing, Mass | 80 | | Swift River at West Ware, Mass | 82 | | Quaboag River at West Brimfield, Mass | 84 | | Westfield River at Knightville, Mass | 8 | | Westfield River near Westfield, Mass | 87 | | Middle Branch of Westfield River at Goss Heights, Mass | 89 | | Westfield Little River near Westfield, Mass | 9: | | Borden Brook near Westfield, Mass | 93 | | Farmington River near New Boston, Mass | 94 | | Housatonic River basin | 96 | | Housatonic River near Great Barrington, Mass | 96 | | Housatonic River at Falls Village, Conn | 98 | | Housatonic River at Gaylordsville, Conn | 101 | | Pomperaug River at Bennetts Bridge, Conn | 102 | | Hudson River basin. | 104 | | Hudson River at North Creek, N. Y | 104 | | Hudson River at Thurman, N. Y | 106 | | Hudson River at Spier Falls, N. Y. | 108 | | Hudson River at Mechanic ville, N. Y. | 110 | | Cedar River near Indian Lake, N. Y. | 111 | | Indian Lake reservoir near Indian Lake, N. Y. | 113 | | Indian River near Indian Lake, N. Y. | 114 | | Schroon River at Riverbank, N. Y. | 115 | | Sacandaga River near Hope, N. Y | 117 | | Sacandaga River at Hadley, N. Y | 119 | | West Branch of Sacandaga River at Blackbridge, near Wells, N. Y | 120 | | Harris Difference Deals Dellar, N. V. | 122 | | Mohawk River at Vischer Ferry dam, N. Y | 124 | | Alplaus Kill near Charlton, N. Y | 126 | | Delaware River basin. | 128 | | East Branch of Delaware River at Fish Eddy, N. Y. | 128 | | | | | Delaware River at Port Jervis, N. Y. | 130
132 | | Delaware River at Riegelsville, N. J. | | | Beaver Kill at Cooks Falls, N. Y | 133 | | West Branch of Delaware River at Hale Eddy, N. Y | 135 | | Susquehanna River basin | 137 | | Susquehanna River at Conklin, N. Y | 137 | | Chenango River near Chenango Forks, N. Y. | 139 | | Chemung River at Chemung, N. Y | 141 | # CONTENTS. | Gaging-station records—Continued. | Page. | |---|-------| | Patuxent River basin | 143 | | Patuxent River near Burtonsville, Md | 143 | | Potomac River basin | 145 | | Potomac River at Point of Rocks, Md. | 145 | | Monocacy River near Frederick, Md | 146 | | Occoquan Creek near Occoquan, Va | 148 | | Rappahannock River basin | 149 | | Rappahannock River near Fredericksburg, Va | 149 | | Miscellaneous measurements | 151 | | Index | 153 | | Appendix—Gaging stations and publications relating to water resources | 1 | | | | | | | | | | | | | | ILLUSTRATIONS. | | | · | | | | Page. | | PLATE I. A, Price current meter; B, Typical gaging station | 10 | | II. Water-stage recorders: A, Stevens; B, Gurley printing; C, Friez | 11 | # SURFACE WATER SUPPLY OF NORTH ATLANTIC SLOPE DRAINAGE BASINS, 1915. # AUTHORIZATION AND SCOPE OF WORK. This volume is one of a series of 14 reports presenting results of measurements of flow made on streams in the United States during the year ending September 30, 1915. The data presented in these reports were collected by the United States Geological Survey under authority implied in the organic law (20 Stat. L., p. 394), which contains the following paragraph: Provided, That this officer [the Director] shall have the direction of the Geological Survey and the classification of public lands and examination of the geological structure, mineral resources, and products of the national domain. The work was begun in 1888 in connection with special studies of water supply for irrigation. Since the fiscal year ending June 30, 1895, successive sundry bills passed by Congress have carried the following item and appropriations: For gaging the streams and determining the water supply of the United States, and for the investigation of underground currents and artesian wells, and for the preparation of reports upon the best methods of utilizing the water resources. Annual appropriations for the fiscal years ending June 30, 1895-1915. | 1895 | \$12,500 | |-------------------------|----------| | 1896 | 20,000 | | 1897 to 1900, inclusive | 50,000 | | 1901 to 1902, inclusive | 100,000 | | 1903 to 1906, inclusive | 200,000 | | 1907 | 150,000 | | 1908 to 1910, inclusive | 100,000 | | 1911 to 1915, inclusive | | In the execution of the work many private and State organizations have cooperated either by furnishing data or by assisting in collecting data. Acknowledgments for cooperation of the first kind are made in connection with the description of each station affected; cooperation of the second kind is acknowledged on page 14. Measurements of stream flow have been made at about 3,800 points in the United States and also at many points in small areas in Seward Peninsula and the Yukon-Tanana region, Alaska, and the Hawaiian Islands. In July, 1914, 1,480 gaging stations were being maintained by the Survey and the cooperating organizations. Many miscel- laneous discharge measurements are made at other points. In connection with this work data were also collected in regard to precipitation, evaporation, storage reservoirs, river profiles, and water power in many sections of the country and will be made available in the regular water-supply papers from time to time. # DEFINITION OF TERMS. The volume of water flowing in a stream—the "run-off" or "discharge"—is expressed in various terms, each of which has become associated with a certain class of work. These terms may be divided into two groups—(1) those that represent a rate of flow, as second-feet, gallons per minute, miner's inches, and discharge in second-feet per square mile, and (2) those that represent the actual quantity of water, as run-off in depth of inches, acre-feet, and millions of cubic feet. The principal terms used in this series of reports are second-feet, second-feet per square mile, run-off in inches, acre-feet, and millions of cubic feet. They may be defined as follows: "Second-feet" is an abbreviation for "cubic feet per second." A second-foot is the rate of discharge of water flowing in a channel of rectangular cross-section 1 foot wide and 1 foot deep
at an average velocity of 1 foot per second. It is generally used as a fundamental unit from which others are computed by the use of the factors given in the tables of convenient equivalents (p. 9). "Second-feet per square mile" is the average number of cubic feet of water flowing per second from each square mile of area drained on the assumption that the run-off is distributed uniformly both as regards time and area. "Run-off depth in inches" is the depth to which the drainage area would be covered if all the water flowing from it in a given period were conserved and uniformly distributed on the surface. It is used for comparing run-off with rainfall, which is usually expressed in depth of inches. An "acre-foot" is equivalent to 43,560 cubic feet and is the quantity required to cover an acre to the depth of 1 foot. The term is commonly used in connection with storage for irrigation. "Millions of cubic feet" is used to express quantities of water stored in reservoirs, most frequently in connection with studies of flood control. The following terms used in these reports are not in common use: "Discharge relation," an abbreviation for the term "relation of gage height to discharge." "Control," "controlling section," and "point of control," terms used to designate the section or sections of the stream below the gage which determine the discharge relation at the gage. It should be noted that the control may not be the same section or sections at all stages. The "point of zero flow" for a given gaging station is that point on the gage—the gage height—to which the surface of the river would fall if there were no flow. # CONVENIENT EQUIVALENTS. The following is a list of convenient equivalents for use in hydraulic computations: Table for converting discharge in second-feet per square mile into run-off in depth in inches over the area. | Discharge
(second- | Run-off (depth in inches). | | | | | | | | | |------------------------------|----------------------------|----------|----------|----------|----------|--|--|--|--| | feet per
square
mile.) | I day. | 28 days. | 29 days. | 30 days. | 31 days. | | | | | | 1 | 0.03719 | 1.041 | 1.079 | 1.116 | 1.153 | | | | | | | .07438 | 2.083 | 2.157 | 2.231 | 2.306 | | | | | | 3 | .11157 | 3. 124 | 3. 236 | 3.347 | 3. 459 | | | | | | 4 | | 4. 165 | 4. 314 | 4.463 | 4. 612 | | | | | | 5 | . 18595 | 5.207 | 5.393 | 5.578 | 5.764 | | | | | | 6 | . 22314 | 6.248 | 6.471 | 6.694 | 6.917 | | | | | | 8 | . 26033 | 7.289 | 7.550 | 7.810 | 8.070 | | | | | | | . 29752 | 8.331 | 8.628 | 8.926 | 9.223 | | | | | | | . 33471 | 9.372 | 9.707 | 10.041 | 10.376 | | | | | Note.—For part of a month multiply the run-off for one day by the number of days. Table for converting discharge in second-feet into run-off in acre-feet. | Discharge | Run-off (acre-feet). | | | | | | | | | |--------------------|--|--|--|---|--|--|--|--|--| | (second-
feet). | 1 day. | 28 days. | 29 days. | 30 days. | 31 days. | | | | | | 1 | 1. 983
3. 967
5. 950
7. 934
9. 917
11. 90
13. 88
15. 87
17. 85 | 55. 54
111. 1
166. 6
222. 1
277. 7
333. 2
388. 8
444. 3
499. 8 | 57. 52
115. 0
172. 6
230. 1
287. 6
345. 1
402. 6
460. 2
517. 7 | 59.50
119.0
178.5
238.0
297.5
357.0
416.5
476.0
535.5 | 61. 49
123. 0
184. 5
246. 0
307. 4
368. 9
430. 4
491. 9
553. 4 | | | | | Note.—For part of a month multiply run-off for one day by the number of days. Table for converting discharge in second-feet into run-off in millions of cubic feet. | Discharge | Run-off (millions of cubic feet). | | | | | | | | | | |--------------------|---|--|---|--|--|--|--|--|--|--| | (second-
feet). | 1 day. | 28 days. | 29 days. | 30 days. | 31 days. | | | | | | | 1 | 0.0864
.1728
.2592
.3456
4.4320
.5184
.6048
.6912
.7776 | 2. 419
4. 838
7. 257
9. 676
12. 10
14. 51
16. 93
19. 35
21. 77 | 2.506
5.012
7.518
10.02
12.53
15.04
17.54
20.05
22.55 | 2. 592
5. 184
7. 776
10. 37
12. 96
15. 55
18. 14
20. 74
23. 33 | 2. 678
5. 356
8. 034
10. 71
13. 39
16. 07
18. 75
21. 42
24. 10 | | | | | | Note.-For part of a month multiply run-off for one day by the number of days. Table for converting discharge in second-feet into run-off in millions of gallons. | Discharge | Run-off (millions of gallons.) | | | | | | | | | |--------------------|---|--|--|--|---|--|--|--|--| | (second-
feet). | 1 day. | 28 days. | 29 days. | 30 days. | 31 days. | | | | | | 1 | 0. 6463
1. 293
1. 939
2. 585
3. 232
3. 878
4. 524
5. 171
5. 817 | 18. 10
36. 20
54. 30
72. 40
90. 50
108. 6
126. 7
144. 8
162. 9 | 18. 74
37. 48
56. 22
. 74. 96
93. 70
112. 4
131. 2
149. 9
168. 7 | 19. 39
38. 78
58. 17
77. 56
96. 95
116. 3
135. 7
155. 1
174. 5 | , 20.04
40.08
60.12
80.16
100.2
120.2
140.3
160.3
180.4 | | | | | Note.—For part of a month multiply the run-off for one day by the number of days. Table for converting velocity into feet per second into velocity in miles per hour. [1 foot per second—0.681818 mile per hour, or two-thirds mile per hour, very nearly; 1 mile per hour=1.4666 feet per second. In computing the table the figures 0.68182 and 1.4667 were used.] | Feet per second | Miles per hour for tenths of foot per second. | | | | | | | | | | |-----------------|---|---|---|---|---|---|---|--|---|---| | (units). | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 0 | 0.000
.682
1.36
2.05
2.73
3.41
4.09
4.77
5.45
6.14 | 0.068
.750
1.43
2.11
2.80
3.48
4.16
4.84
5.52
6.20 | 0. 136
. 818
1. 50
2. 18
2. 86
3. 55
4. 23
4. 91
5. 59
6. 27 | 0. 205
. 886
1. 57
2. 25
2. 93
3. 61
4. 30
4. 98
5. 66
6. 34 | 0. 273
. 995
1. 64
2. 32
3. 00
3. 68
4. 36
5. 05
5. 73
6. 41 | 0.341
1.02
1.70
2.39
3.07
3.75
4.43
5.11
5.80
6.48 | 0. 409
1. 09
1. 77
2. 45
3. 14
3. 82
4. 50
5. 18
5. 86
6. 55 | 0. 477
1. 16
1. 84
2. 52
3. 89
4. 57
5. 25
5. 93
6. 61 | 0.545
1.23
1.91
2.59
3.27
3.95
4.64
5.32
6.00
6.68 | 0.614
1.30
1.98
2.66
3.34
4.02
4.70
5.39
6.07
6.75 | - 1 second-foot equals 40 California miner's inches (law of Mar. 23, 1901). - 1 second-foot equals 38.4 Colorado miner's inches. - 1 second-foot equals 40 Arizona miner's inches. - 1 second-foot equals 7.48 United States gallons per second; equals 448.8 gallons per minute; equals 646,317 gallons for one day. - 1 second-foot for one year (365 days) covers 1 square mile 1.131 feet of 13.752 inches deep. - 1 second-foot for one year (365 days) equals 31,536,000 cubic feet. - 1 second-foot equals about 1 acre-inch per hour. - 1 second-foot for one year (365 days) equals 724 acre-feet. - 1 second-foot for one day equals 86,400 cubic feet. - 1,000,000,000 (1 United States billion) cubic feet equals 11,570 second-feet for one day. - 1,000,000,000 cubic feet equals 414 second-feet for one 28-day month. - 1,000,000,000 cubic feet equals 399 second-feet for one 29-day month. - 1,000,000,000 cubic feet equals 386 second-feet for one 30-day month. - 1,000,000,000 cubic feet equals 373 second-feet for one 31-day month. - 100 California miner's inches equals 18.7 United States gallons per second. - 100 California miner's inches for one day equals 4.96 acre-feet. - 100 Colorado miner's inches equals 2.60 second-feet. - 100 Colorado miner's inches equals 19.5 United States gallons per second. - 100 Colorado miner's inches for one day equals 5.17 acre-feet. - 100 United States gallons per minute equals 0.223 second-foot. - 100 United States gallons per minute for one
day equals 0.442 acre-foot. A. PRICE CURRENT METERS. B. TYPICAL GAGING STATION. B. GURLEY PRINTING. C. FRIEZ. A. STEVENS. 1,000,000 United States gallons per day equals 1.55 second-feet. 1,000,000 United States gallons equals 3.07 acre-feet. 1,000,000 cubic feet equals 22.95 acre-feet. 1 acre-foot equals 325,850 gallons. 1 inch deep on 1 square mile equals 2,323,200 cubic feet. 1 inch deep on 1 square mile equals 0.0737 second-foot per year. 1 foot equals 0.3048 meter. 1 mile equals 1.60935 kilometers. 1 mile equals 5,280 feet. 1 acre equals 0.4047 hectare. 1 acre equals 43,560 square feet. 1 acre equals 209 feet square, nearly. 1 square mile equals 2.59 square kilometers. 1 cubic foot equals 0.0283 cubic meter. 1 cubic foot of water weighs 62.5 pounds. 1 cubic meter per minute equals 0.5886 second-foot. 1 horsepower equals 550 foot-pounds per second. 1 horsepower equals 76.0 kilogram-meters per second. 1 horsepower equals 746 watts. 1 horsepower equals 1 second-foot falling 8.80 feet. 13 horsepower equals about 1 kilowatt. To calculate water power quickly: $\frac{\text{Second-feet} \times \text{fall in feet}}{11} = \text{net horsepower on}$ water wheel realizing 80 per cent of theoretical power. # EXPLANATION OF DATA. The data presented in this report cover the year beginning October 1, 1914, and ending September 30, 1915. At the first of January, in most parts of the country a large amount of the precipitation for the preceding three months is stored, either as ground water, in the form of snow, or in lakes. This stored water passes off in the streams during the spring break-up. At the end of September the only stored water available for run-off in the streams is possibly a small amount held in ground storage. Therefore the run-off for a year, beginning with October 1 is practically all derived from precipitation occurring within that year. The base data collected at gaging stations (Pl. I, B) consist of records of stage, measurements of discharge, and general information used to supplement the gage heights and discharge measurements in determining the daily flow. The records of stage are obtained either from direct readings on a staff gage or from a water-stage recorder (Pl. II) that gives a continuous record of the fluctuations. Measurements of discharge are made with a current meter by the general methods outlined in standard textbooks on the measurement of river discharge. From the discharge measurements rating tables are prepared that give the discharge for any stage, and these rating tables, when applied to the gage heights, give the daily discharge from which the monthly and yearly mean discharge is determined. The data presented for each gaging station in the area covered by this report comprises a description of the station, a table giving results of discharge measurements, a table showing the daily discharge of the stream, and a table of monthly and yearly discharge and run-off. If the base data are insufficient to determine the daily discharge, tables giving daily gage heights and results of discharge measurements are published. The description of the station gives, in addition to statements regarding location and equipment, information in regard to any conditions that may affect the constancy of the discharge relation, covering such subjects as the occurrence of ice, the use of the stream for log driving, shifting of channel, and the cause and effect of backwater; it gives also information as to diversions that decrease the flow at the gage, artificial regulation, maximum and minimum recorded stages, and the accuracy of the records. The table of daily discharge gives the discharge in second-feet corresponding to the mean of the gage heights read each day. At stations on streams subject to sudden or rapid diurnal fluctuation the discharge obtained from the rating table and the mean daily gage height may not be the mean discharge for the day. If such stations are equipped with water-stage recorders the mean daily discharge may be obtained by averaging discharge at regular intervals during the day or by use of the discharge integrator, an instrument operating on the principle of the planimeter and containing as an essential element the rating curve of the station. In the table of monthly discharge the column headed "Maximum" gives the mean flow, as determined from the rating table, for the day when the mean gage height was highest. As the gage height is the mean for the day, it does not indicate correctly the stage when the water surface was at crest height, and the corresponding discharge was consequently larger than given in the maximum column. Likewise, in the column of "Minimum" the quantity given is the mean flow for the day when the mean gage height was lowest. The column headed "Mean" is the average flow in cubic feet for each second during the month. On this the computations for the remaining columns, which are defined on page 8, are based. # ACCURACY OF FIELD DATA AND COMPUTED RESULTS. The accuracy of stream-flow data depends primarily (1) on the permanency of the discharge relation and (2) on the accuracy of observation of stage, measurements of flow, and interpretation of records. In order to give engineers and others information regarding the probable accuracy of the computed results, footnotes are added to the daily discharge tables, stating the probable accuracy of the rating tables used, and an accuracy column is inserted in the monthly discharge table. For the rating tables, "well defined" indicates, in general, that the rating is probably accurate within 5 per cent; "fairly well defined," within 10 per cent; "poorly defined" within 15 to 25 per cent. These notes are very general and are based on the plotting of the individual measurements with reference to the mean rating curve. The accuracy column in the monthly discharge table does not apply to the estimate of maximum or minimum discharge nor to that for any one day, but to the monthly mean. It is based on the accuracy of the rating curve, the probable reliability of the observer, the number of gage readings per day, the range of the fluctuation in stage, and knowledge of local conditions. In this column A indicates that the mean monthly flow is probably accurate within 5 per cent; B, within 10 per cent; C, within 15 per cent; D, within 25 per cent. Special conditions are covered by footnotes. Even though the monthly means for any station may represent with a high degree of accuracy the quantity of water flowing past the gage, the figures showing discharge per square mile and depth of run-off in inches may be subject to gross errors which result from including in the measured drainage area large noncontributing districts or omitting estimates of water diverted for irrigation or other use. On this account computations of "second-feet per square mile" and "run-off (depth in inches)" have not been made for streams draining areas in which the annual rainfall is less than 20 inches nor for streams draining areas in which the precipitation exceeds 20 inches if such computations might be uncertain or misleading because of the presence of large noncontributing districts in the measured drainage area, because of the omission of estimates of water diverted for irrigation or other use, or because of artificial control or unusual natural control of the flow of the river above the gaging station. All values of "second-feet per square mile" and "run-off (depth in inches)" previously published by the Survey should be used with care because of possible inherent sources of error not known to the Survey. In general the base data collected each year by the Survey engineers are published not only to comply with the law but also to afford any engineer the means of analyzing in detail the results of the computations. The table of monthly discharge is so arranged as to give only a general idea of the flow at the station and should not be used for other than preliminary estimates; the tables of daily discharge allow more detailed studies of the variation in flow. It should be borne in mind, however, that the observations in each succeeding year may be expected to throw new light on data already collected and published. #### COOPERATION. The hydrometric work in Maine was carried on in cooperation with the Public Utilities Commission of Maine, Benjamin F. Cleaves, chairman, and Paul L. Bean, chief engineer. Hydrometric work in Vermont and Massachusetts was carried on under cooperative agreements between Charles W. Gates, governor of Vermont, David I. Walsh, governor of Massachusetts, and the director of the United States Geological Survey. The station on Pomperaug River at Bennetts Bridge, Conn., was maintained in cooperation with the State of Connecticut. In New York hydrometric work was carried on in cooperation with Frank M. Williams, State engineer and surveyor, and with the Division of Inland Waters of the State Conservation Commission. Financial assistance has been rendered by the New England Power Co., the Turners Falls Power & Electric Co., the Connecticut Valley Lumber Co., the Holyoke Water Power Co., the International Paper Co., the Potomac Electric Power Co., the Spottsylvania Power Co., and other power companies in connection with records on streams which they are utilizing. ## DIVISION OF WORK. The data for stations in New England were collected and prepared for publication under the direction of C. H. Pierce, district engineer. The work in Maine was under the immediate supervision of G. C. Danforth, assistant engineer of the Public Utilities Commission, assisted by W. G. Hill. The other assistants in New England were Hardin Thweatt, R. S. Barnes, G. F. Adams, and W. A. Elwood. For stations in New York the data were collected and prepared for publication under the direction of C. C. Covert, district engineer, who was assisted by O. W. Hartwell, C. S. DeGolyer, E. D. Burchard, H. W. Fear, R. M. Adams, W. A. James, and H. Kimmey. For stations
in New Jersey, Maryland, and Virginia the data were collected and prepared for publication under the direction of G. C. Stevens, district engineer, who was assisted by E. S. Fuller, H. J. Dean, E. D. Burchard, H. W. Fear, M. I. Walters, W. A. Elwood, and W. F. Zens. The manuscript was assembled and reviewed by H. J. Dean. ## GAGING-STATION RECORDS. ## ST. JOHN RIVER BASIN. ST. JOHN RIVER AT FORT KENT, MAINE. LOCATION.—At suspension footbridge in the town of Fort Kent, Aroostook County, a short distance above mouth of Fish River and about 15 miles below mouth of St. Francis River, Drainage area, which is partly tributary to Penobscot basin. (See Water-Supply Paper 281, p. 28.) RECORDS AVAILABLE.—October 13, 1905, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGE.—Inclined staff 22 feet long, in two sections, attached to new concrete pier nearest New Brunswick shore of river. Lower part of gage is placed in a groove in the side of the pier; upper part is fastened to downstream end of same pier. Gage read twice daily by F. L. Hamilton. DISCHARGE MEASUREMENTS.—Made from footbridge. CHANNEL AND CONTROL.—Practically permanent; both banks high, rocky, cleared, and not subject to overflow except in extreme freshets. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 13.5 feet at 4 p. m., May 5, and at 8 a. m., May 6 (discharge, 43,700 second-feet); minimum stage recorded, below 3.0 feet (bottom of gage), August 4-7, and September 12-15 (estimated discharge, 840 second-feet). WINTER FLOW.—Discharge relation affected by ice. REGULATION.—Operation of a few dams on upper headwaters for log driving affects only slightly flow past gage. Accuracy.—Results considered good. The following discharge measurement was made by W. G. Hill: May 19, 1915: Gage height, 7.70 feet; discharge, 13,600 second-feet. Daily discharge, in second-feet, of St. John River at Fort Kent, Maine, for the year ending Sept. 30, 1915. | | T | 1 | I | 1 | 1 | 1 | | 1 | 1 | |----------------------------|---------------------------|---|-------------------------|----------------------------|---|---|--|--|--| | Day. | Oct. | Nov. | Dec. | Apr. | Мау. | June. | July. | Aug. | Sept. | | 1 | 1,810
1,810
1,810 | 4,370
4,630
5,040
6,380
6,380 | 4,760
5,770
6,690 | | 38,000
38,200
40,200 | 8,170
7,500
7,170
6,540
6,690 | 2,610
2,420
1,970
1,890
1,660 | 1,160
1,060
1,060
950
950 | 2,610
2,060
1,810
1,810
1,520 | | 6 | 1,520
1,460
1,270 | 6,070
5,770
6,380
6,380
6,380 | 9,580
8,340
7,330 | | 36,000
39,100
41,700 | 7,830
8,000
6,690
5,040
4,760 | 1,890
2,060
2,140
2,510
3,860 | 900
900
1,060
1,110
1,890 | 1,330
1,060
1,060
1,160
1,060 | | 11
12
13
14
15 | 8,520
11,300
10,300 | 6,070
6,220
6,070
6,070
5,320 | 4,760 | 37,400 | 30,700 | 4,370
4,370
5,040
5,180
4,900 | 4,900
5,180
5,620
7,830
8,860 | 2,140
2,140
2,710
3,860
6,070 | 1,060
980
840
980
1,060 | | 16 | 5,040
4,370
4,370 | 4,240
3,610
3,740 | | 30,900
35,200
41,400 | 20,700
16,900
15,400
14,300
15,000 | 4,760
4,900
4,900
4,630
3,980 | 7,660
7,830
7,330
6,540
5,180 | 6,070
5,620
4,900
4,240
4,240 | 1,060
1,520
1,660
1,660
1,520 | | 21 | 9,040
11,100
12,300 | 4,630
4,370 | | 39,700
34,700
33,000 | 13,700
12,300
12,100
12,700
10,700 | 3,490
3,370
3,030
3,140
3,740 | 4,500
3,740
3,260
3,140
2,920 | 3,980
3,140
2,610
2,710
2,820 | 1,390
2,320
4,240
4,370
4,110 | | 26 | | 4,370
4,110
4,110 | | 41,400
38,500
33,000 | 8,860
11,100
9,580
9,400
9,220
8,690 | 3,860
3,860
3,860
3,490
3,030 | 2,920
2,920
2,610
2,060
1,590
1,330 | 3,370
4,240
4,110
3,370
3,140
2,920 | 3,860
4,110
10,700
15,400
13,700 | Note.—Discharge determined from a well-defined rating curve. No gage readings obtained Aug. 4-7 and Sept. 12-15; discharge estimated by comparison with records at Van Buren. Discharge relation affected by ice Dec. 14 to Apr. 14; discharge not estimated. Monthly discharge of St. John River at Fort Kent, Maine, for the year ending Sept. 30, 1915. #### [Drainage area, 4,880 square miles.] | | D | Run-off | | | | | |---|--|---|---|---|--|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October. November December 1-13 April 15-30. May. June July. August. September. | 6,380
10,100
41,400
43,100
8,170
8,860
6,070 | 1, 220
2, 710
4, 110
26, 400
8, 690
3, 030
1, 330
900
840 | 5,530
4,910
6,730
35,700
23,800
5,010
3,900
2,890
3,070 | 1. 13
1. 01
1. 38
7. 32
4. 88
1. 03
. 799
. 592
. 629 | 1.30
1.13
.67
4.36
5.63
1.15
.92
.68
.70 | B.
B.
B.
B.
B.
B.
B. | ## ST. JOHN RIVER AT VAN BUREN, MAINE. LOCATION.—At new International Bridge at Van Buren, Aroostook County, Maine, about 14 miles above Grand Falls, New Brunswick. Drainage area.—8,270 square miles. RECORDS AVAILABLE.—May 4, 1908, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. Gage.—Gage used since May 6, 1912, painted vertically on second pier from Van Buren end of bridge; zero of gage 407.69 feet above sea level; gage heights 1908 to 1911 read on a vertical rod attached to pier of sawdust carrier of Hammond's mill, about 700 feet below International Bridge, but reduced to datum of bridge gage in published reports. Gage read twice daily by W. H. Scott. DISCHARGE MEASUREMENTS.—Made from International Bridge. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 22.0 feet at 5.15 p. m., May 9 (discharge, 87,500 second-feet); minimum stage recorded, 1.4 feet at 6.10 a. m. and 6 p. m., September 13 (discharge, I,740 second-feet). WINTER FLOW.—Discharge relation affected by ice. Estimate of discharge based on gage heights observed at Grand Falls. REGULATION.—The little storage above for log driving probably does not affect the discharge. Accuracy.—Results considered good. COOPERATION.—Winter gage heights at Grand Falls furnished by H. S. Ferguson, consulting engineer. Discharge measurements of St. John River at Van Buren, Maine, during the year ending Sept. 30, 1915. [Made by W. G. Hill.] | Date. | Gage
height. | Dis-
charge. | Date. | Gage
height. | Dis-
charge. | |--------|----------------------------|---------------------------|--------|-----------------|------------------| | Mar. 2 | Feet.
a 8. 00
12. 65 | Secft.
7,040
35,500 | May 20 | Feet.
12. 10 | Secft.
32,100 | a Discharge relation affected by ice. Daily discharge,in second-feet, of St. John River at Van Buren, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |----------------------------------|----------------------------------|--|--|--|--|--|---|--|---|--|--|---| | 1
2
3
4
5 | 2,880
2,700
2,440 | 7,720
7,720
8,850
9,240
9,500 | 9,790
7,250
7,840
9,450
10,100 | 3,500
3,350
3,350
3,200
3,050 | 2,410
2,410
2,410
2,300
2,300 | 8,150
8,150
8,630
8,960
9,129 | 5,500
5,500
5,500
5,400
5,400 | 60,500
64,500
67,200 | 18,800
17,900
17,400
16,500
19,200 | 7, 120
6, 520
5, 940
5, 360
4, 810 | 4,050
3,640
3,340
3,060
2,880 | 3,640
3,150
2,790 | | 6
7
8
9 | 2,120
2,040 | 9,630
9,370
9,760
9,630
8,980 | 10, 100
9, 450
9, 120
8, 790
8, 150 | 2,910
3,050
3,200
3,200
3,200 | 2, 190
2, 190
2, 300
2, 410
2, 520 | 9, 120
9, 450
9, 960
10, 100
10, 100 | 5,500
5,610
6,070
6,700
7,250 | 71, 700
69, 300
70, 800
86, 500
82, 600 | 18,700
17,400
15,600
13,000
10,300 | 5,360
5,820
5,590
7,480
11,000 | 2,700
2,530
2,700
2,790
3,340 | 2,530
2,360
2,040
2,280
2,440 | | 11
12
13
14
15 | 9,500
14,100 | 8,100
6,880
6,280
6,160
5,820 | 7,540
6,700
6,440
5,720
5,290 | 3, 200
3, 050
3, 050
3, 050
2, 910 | 2,520
2,520
2,300
2,300
2,300 | 10,100
9,790
9,620
9,450
9,120 | 9,960
26,200
35,200
36,800
49,200 | 64,500
59,200
55,000 |
11,800
11,800
12,300
12,200
11,900 | 11,400
10,800
10,700
12,100
13,600 | 3,640
3,540
3,640
3,840
3,250 | 2,040
1,740
2,040 | | 16
17
18
19
20 | l 7,720l | 6,050
7,240
7,240
8,600
11,200 | 5,090
4,890
4,890
5,090
5,500 | 2,910
2,770
2,770
2,770
2,770 | 2,300
2,190
2,410
2,640
2,910 | 9, 120
9, 120
8, 960
8, 790
8, 790 | 68,700
71,100
83,000
68,400
61,600 | 36, 100
34, 100 | 11,600
11,500
11,100
11,000
10,400 | 13,000
12,600
13,200
12,300
10,600 | 5,820
7,720
7,120
5,940
5,590 | 2,200
2,200
2,360
2,700
2,880 | | 21
22
23
24
25 | 11,400
12,200
11,400 | 12,100
13,000
13,000
12,800
12,800 | 5, 290
5, 090
4, 890
4, 700
4, 700 | 2,770
2,910
3,200
3,820
3,500 | 3,350
4,330
4,700
5,090
5,720 | 8,470
8,150
8,000
7,840
7,250 | 61, 400
60, 500
56, 200
53, 000
51, 500 | 32,800
29,600
27,800
27,600
24,700 | 10, 200
9, 630
9, 110
8, 860
8, 720 | 9, 240
8, 220
7, 360
7, 000
6, 640 | 5,700
5,140
4,590
4,370
3,840 | 3,840
5,940 | | 26
27
28
29
30
31 | 8,220
7,600
7,000
6,760 | 13,000
12,600
12,200
12,100
12,100 | 4,510
4,160
3,990
3,990
3,660
3,660 | 3, 200
2, 910
2, 770
2, 520
2, 520
2, 410 | 6,700
7,840
8,150 | 7, 110
6, 440
5, 950
5, 500
5, 500
5, 400 | 53, 200
57, 500
68, 100
69, 600
65, 400 | 22,700
22,900
24,400
22,700
21,200
20,000 | 8,470
8,220
8,220
7,970
7,720 | 6, 160
5, 940
5, 700
5, 250
4, 700
4, 370 | 4,050
4,920
5,700
5,360
4,700
1,480 | 17,400
20,800
22,400 | Note.—Discharge for open-water period determined from a well-defined rating curve. Discharge relation affected by ice Dec. 1 to Apr. 11; discharge determined from gage heights at Grand Falls by means of a rating curve based on discharge measurements at Van Buren. Monthly discharge of St. John River at Van Buren, Maine, for the year ending Sept. 30, 1915. #### [Drainage area, 8,270 square miles.] | | D | ischarge in se | econd-feet. | • | Run-off | | |--|---|---|---|--|---|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
. area). | Accu-
racy. | | October November December January February March April. May June July August Soptember | 13,000
10,100
3,820
8,150
10,100
83,000
86,500
19,200
13,600
7,720 | 2,040
5,820
3,660
2,410
2,190
5,400
5,400
20,000
7,720
4,170
2,530
1,740 | 7, 160
9, 660
5, 320
3, 030
3, 350
8, 390
38, 900
47, 500
12, 300
8, 250
4, 320
5, 220 | 0.866 1.17 .764 .366 .405 1.01 4.70 5.74 1.49 .998 .522 .631 | 1. 00
1. 30
. 88
. 42
1. 16
5. 24
6. 62
1. 66
1. 15 | A.
A.
C.
C.
C.
C.
B.
A.
A.
A. | | The year | | 1,740 | 12,900 | 1. 56 | 21. 15 | | #### MACHIAS RIVER BASIN. #### MACHIAS RIVER AT WHITNEYVILLE, MAINE. LOCATION.—At a wooden highway bridge in the town of Whitneyville, Washington County, 200 feet below a storage dam, 4 miles above Machias. Drainage area.-465 square miles. RECORDS AVAILABLE.—October 17, 1903, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. Gage.—Chain installed on the wooden highway bridge October 10, 1911; prior to October 3, 1905, chain gage on the Washington County railroad bridge, three-fourths of a mile downstream; October 3, 1905, to October 9, 1911, staff gage on highway bridge at datum of present chain gage. Gage read once a day by Ira S. Albee. DISCHARGE MEASUREMENTS.—Made from railroad bridge or by wading at a point 200 feet above railroad bridge. CHANNEL AND CONTROL.—Practically permanent. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 11.0 feet at 1.30 p. m. May 2, and 2.10 p. m. May 3 (discharge, 6,780 second-feet); minimum stage recorded, 2.8 feet, on October 1, 2, 3, 16, 17, 18 (discharge, 30 second-feet). WINTER FLOW.—Discharge relation not seriously affected by ice. REGULATION.—Opening and closing of gates in storage dam immediately above station each day during low stages of the river causes considerable fluctuation; some log driving every year and jams of short duration occasionally occur. Accuracy.—Results considered fair. Discharge measurements of Machias River at Whitneyville, Maine, during the year ending, Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | |-------------------|------------------------------|-----------------------|-------------------------| | May 6
Sept. 14 | W. G. Hill
G. C. Danforth | Feet.
7.45
3.77 | Secft.
3, 280
399 | Daily discharge, in second-feet, of Machias River at Whitneyville, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------|--|-------------------------------------|--|---|-----------------------------------|---|---|--|---|---|--|--| | 1 | 30
30
30
51
77 | 682
571
517
464
412 | 412
412
412
517
626 | 362
314
267
267
221 | 464
412
412
412
412 | 1,230
1,040
740
571
517 | 221
221
221
267
267 | 3,880
6,780
6,780
6,120
4,480 | 1,710
1,490
1,360
1,230
1,100 | 517
517
517
464
464 | 626
626
1,040
981
920 | 412
362
314
267
267 | | 6 | 107
107
77
51
51 | 362
314
267
267
267 | 517
464
412
362
314 | 221
464
920
860
682 | 412
517
981
920
740 | 464
412
412
412
412 | 267
517
740
740
740 | 2,980
2,980
3,080
3,180
3,380 | 1,100
1,100
1,040
981
981 | 517
517
517
2,620
5,130 | 860
800
740
682
682 | 267
267
267
267
267
267 | | 11 | 51
51
51
51
51 | 221
178
141
107
107 | 267
267
267
267
267
800 | 517
464
412
362
314 | 626
517
517
412
362 | 412
362
362
362
362
314 | 740
1,100
1,710
1,360
1,360 | 3, 280
2, 620
2, 180
1, 940
1, 640 | 950
920
860
626
412 | 3,580
2,270
1,360
1,230
1,100 | 626
571
517
464
412 | 267
267
314
362
412 | | 16 | 30
30
30
51
178 | 517
1,490
1,170
800
740 | 740
626
464
362
362 | 267
267
267
2,440
3,080 | 682
1,290
981
800
626 | 314
314
314
267
267 | 1,360
1,360
1,290
1,230
1,100 | 1,490
1,360
1,360
1,360
1,490 | 517
517
517
464
464 | 981
860
860
860
800 | 412
412
387
362
362 | 412
412
412
412
412
412 | | 21 | 362
571
571
571
571
517 | 740
676
517
464
464 | 362
362
362
362
362
362 | 1,940
1,170
1,040
981
920 | 517
464
412
981
2,360 | 267
267
267
221
221 | 1,040
981
981
981
1,230 | 1,710
1,860
2,100
2,360
2,360
2,360 | 1,100
1,040
981
981
920 | 740
682
740
740
682 | 362
412
517
571
626 | 362
314
267
221
221 | | 26 | 464
464
517
517
626
800 | 464
464
464
412
412 | 362
314
267
267
267
314 | 860
800
800
800
800
800
517 | 2,980
4,280
2,180 | . 221
221
221
221
221
221
221 | 1,430
1,560
1,640
1,640
1,940 | 2,270
2,180
2,100
2,100
2,100
1,940 | 920
860
800
740
626 | 626
626
626
626
626
626 | 571
517
464
464
464
412 | 267
362
362
314
267 | Note.—Discharge determined from a rating curve well defined between 100 and $4{,}000$ second-feet. Discharge relation may have been slightly affected by ice at various times in December, January, and February. Monthly discharge of Machias River at Whitneyville, Maine, for the year ending Sept. 30, 1915. ## [Drainage area, 465 square miles.] | | D | ischarge in s | econd-feet. | | Run-off
(depth in | | |--|---|--|--|---|---|--| | Month. | Maximum. | Minimum. | Mean.
| Mean. Per square mile. | | Accu-
racy. | | October November December January February March April June June July August September | 1, 490
800
3, 080
4, 280
1, 230
1, 940
6, 780
1, 710
5, 130 | 30
107
267
221
362
221
1,360
412
464
362
221 | 231
489
402
761
952
390
1,000
2,760
910
1,070
576
320 | 0. 497
1. 05
. 865
1. 64
2. 05
. 839
2. 15
5. 94
1. 96
2. 30
1. 24
. 688 | 0.57
1.17
1.00
1.89
2.14
.97
2.40
6.85
2.19
2.65
1.43 | C. B. C. C. B. B. B. B. B. B. B. B. B. | | The year | 6,780 | 30 | 822 | 1.77 | 24.03 | | #### UNION RIVER BASIN. ## WEST BRANCH OF UNION RIVER AT AMHERST, MAINE. a LOCATION.—At highway bridge, three-fourths of a mile west of Amherst post office, Hancock County, on road to Bangor, about a mile below highway bridge at old tannery dam. Drainage area.—140 square miles. RECORDS AVAILABLE.—July 25, 1909, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. Gage.—Chain, installed June 2, 1910, at same datum as old vertical gage nailed to log abutment; read twice a day by Mrs. Emma Sumner. DISCHARGE MEASUREMENTS.—Made from downstream side of the bridge. CHANNEL AND CONTROL.—Gravel; unlikely to change except in unusual flood. WINTER FLOW.—Discharge relation seriously affected by ice. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 12 feet at 4 p. m. May 1 (discharge, from extension of rating curve, 1,840 second-feet); minimum open stage recorded, 5.05 feet October 3, 6, and 8 (discharge, 21 second-feet); minimum discharge estimated at 19 second-feet December 22-25 and January 5, when discharge relation was affected by ice. REGULATION.—A few log-driving dams above the station, but the regimen of stream is only slightly affected thereby. Accuracy.—Results considered fair. Discharge measurements of West Branch of Union River at Amherst, Maine, during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | |---------------------|--------------------------------|-------------------|-----------------------| | Feb. 15
Sept. 17 | W. G. Hill.
G. C. Danforth. | Feet. b 8.35 5.68 | Secfeet.
285
61 | a Published in reports for 1911 to 1913 as "Union River at Amherst." b Discharge relation affected by ice, Daily discharge, in second-feet, of West Branch of Union River at Amherst, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------|----------------------------------|----------------------------------|----------------|--|---------------------------------|---|---------------------------------|--------------------------------------|--|--------------------------------| | 1 | 23
23
21
23
23 | 72
78
78
78
72
68 | 90
90
96 | | 140
148
156
156
164 | 1,500
1,680
1,520
1,600
1,660 | 274
304
226
217
190 | 96
90
148
110
78 | 96
140
173
132
118 | 173
132
96
96
90 | | 6 | 21
21
21
23
28 | 68
68
59
59
59 | | | 173
236
284
325
369 | 1,600
1,370
1,240
1,130
1,110 | 199
190
164
132
140 | 90
90
90
930
1,220 | 110
140
118
78
78 | 110
68
68
63
63 | | 11 | 26
23
23
23
23
23 | 55
55
55
59 | | 199
a 207
a 216 | 438
738
896
846
768 | 896
738
682
568
532 | 140
140
125
110
110 | 984
896
913
814
724 | 90
72
110
110
68 | 59
59
68
68
68 | | 16 | 34
34
37
40
51 | | | a 224
132
a 127
a 122
118 | 783
656
669
605
580 | 484
520
415
369
347 | 110
125
125
103
125 | 618
520
484
415
314 | 68
90
103
103
96 | 68
68
59
59
55 | | 21 | 51
40
40
40
51 | | | a 124
a 129
a 134
140
a 143 | 556
532
532
508
520 | 325
304
294
294
294 | 164
156
156
156
156 | 294
199
190
164
148 | 90
90
190
190
264 | 51
, 51
51
44
44 | | 26 | 55
72
96
78
78
83 | |
 | a 145
148
a 144
a 140
a 136
132 | 461
532
532
508
605 | 284
347
380
380
336
304 | 140
125
125
110
103 | 118
103
96
90
103
103 | 236
199
182
164
118
164 | 164
182
182
164
90 | a Discharge interpolated. Note.—Discharge determined from a fairly well defined rating curve. Discharge relation affected by ice Nov. 15-30 and Dec. 4 to March 12, estimates based on gage heights corrected for backwater by means of one discharge measurement and climatic data. # Monthly discharge of West Branch of Union River at Amherst, Maine, for the year ending Sept. 30, 1915. ## [Drainage area, 140 square miles.] | | D | ischarge in s | econd-feet. | • | Run-off | | |---------------------------------|--------------|-------------------|-------------------------|-------------------------|--|----------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October
November
December | | · 21 | 39. 5
99. 1
63. 2 | 0.282
.708
.452 | 0. 33
. 79
. 52 | A.
B.
C. | | January February March | | | 91. 9
309
235 | . 657
2.21
1.68 | .76
2.30
1.94 | С.
С.
В. | | April | 1,680
304 | 140
284
103 | 481
758
155 | 3. 44
5. 41
1. 11 | 3.84
6.24
1.24 | В.
В.
В. | | Júly
August
September | 264 | 78
68
44 | 362
128
87. 1 | 2.59
.914
.622 | 2.99
1.05
.69 | В.
В.
В. | | The year | 1,680 | ` 19 | 234 | 1.67 | 22.69 | | BRANCH LAKE NEAR ELLSWORTH, MAINE. LOCATION.—At Branch Pond Lumber Co.'s mill at lower end of Branch Lake, 5 miles northwest of Elisworth. AREA OF LAKE SURFACE.—4.33 square miles. RECORDS AVAILABLE.—June 29, 1909, to March 31, 1915, when station was discontinued. Gage.—Vertical staff nailed to corner of mill near intake to wheels. ALTITUDE.—Altitude as determined by United States Geological Survey, 236 feet above sea level, which was assumed as height of water surface at time of Union River surveys.¹ Daily gage height, in feet, of Branch Lake near Ellsworth, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Jan. | Feb. | Mar. | Day. | Oct. | Nov. | Jan. | Feb. | Mar. | |-----------------------|-------|------|------|------|---------------------|-------------------|------|------|------|---------------------|----------------------| | 1 | | 0.4 | 0.7 | | 3.0
3.15
3.2 | 16
17
18 | | | 0.7 | | 3. 2
3. 2 | | 3
4
5 | . 1.2 | | | | 3.05
3.05 | 19.
20. | | | | 1.9
2.1 | 3. 2
3. 1
3. 1 | | 6
7 | | | 1.05 | 1.9 | 3.1
3.15
3.15 | 21 | | | 1.7 | 2. 2
2. 1 | 3.1
3.1 | | 9
10
11 | - | | 1.1 | | 3.15 | 25
26 | .6 | | | 2.05
2.1
2.85 | 3.1
3.1
3.1 | | 12
13
14
15. | | | | 1.8 | 3.15
3.15
3.2 | 27.
28.
29. | | | | 2.9
3.0 | 3.1
3.2
3.2 | | , | | •••• | | | 3.2 | 31 | | | 1.80 | | 3. 2 | ## PENOBSCOT RIVER BASIN. WEST BRANCH OF PENOBSCOT RIVER AT MILLINOCKET, MAINE. LOCATION.—At Quakish Lake dam and Millinocket mill of Great Northern Paper Co. at Millinocket, Penobscot County. Drainage area.—1,880 square miles. RECORDS AVAILABLE.—January 11, 1901, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGES.—Water-stage recorder at Quakish Lake dam and gages in the fore bay and tailraces at the mill. CHANNEL AND CONTROL.—Crest of concrete dam. DETERMINATION OF DISCHARGE.—Flow computed by considering the flow over the dam, the flow through the wheels, and the water used from time to time through the log sluices and filters. The wheels were rated at Holyoke, Mass., before being placed in position and were tested later by numerous tube-float and current-meter measurements. When the flow of the river is less than 2,500 second-feet, all the water generally flows through the wheels of the mill. WINTER FLOW.—Discharge relation not seriously affected by ice. REGULATION.—Dams at outlets of North Twin and Chesuncook lakes store water on a surface of about 65 square miles, with a capacity of about 32 billion cubic feet. Except during the time (usually in August) when excess water has to be supplied for log driving on the river below Millinocket and for a short time during the spring freshet, run-off is regulated by storage. Results corrected for storage. COOPERATION.—Results obtained and computations made by engineers of Great Northern Paper Co. Monthly discharge of West Branch of Penobscot River at Millinocket, Maine, for the year ending Sept. 30, 1915. ### [Drainage area, 1,880 square miles.] | | Discha | rge in second | -feet. | | |--|--|--|---|--| | Month. | | Corrected fo | Corrected
run-off
(depth in
inches on | | | | Observed
mean. | Mean. | Per
square
· mile. | drainage
area). | | October November December January February March April May June June July August September | 2, 280
2, 230
2, 230
2, 060
1, 700
1, 740
2, 240
2, 260
2, 470
2, 680
 1, 260
1, 730
1, 140
656
641
1, 500
5, 370
7, 600
3, 030
2, 280
925
925 | 0.670
.920
.606
.349
.341
.798
2.86
4.04
1.61
1.21
.492
.493 | 0.77
1.03
.70
.40
.35
.92
3.19
4.66
1.80
1.40 | | The year | | 2,260 | 1. 20 | 16.34 | #### PENOBSCOT RIVER AT WEST ENFIELD, MAINE. LOCATION.—At the steel highway bridge 1,000 feet below the mouth of Piscataquis River and 3 miles west of Enfield railroad station, Penobscot County. Drainage area, -6,600 square miles. RECORDS AVAILABLE.—January 1, 1902, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. Gage.—Friez water-stage recorder on left bank, downstream side of left bridge abutment, used since December 11, 1912; standard chain gage on upstream side of bridge; gages set to same datum. DISCHARGE MEASUREMENTS.—Made from bridge. CHANNEL AND CONTROL.—Channel at gage broken by four bridge piers; straight above and below the gage; banks high and rocky and not subject to overflow. The control is at Passadumkeag Rips, about 5 miles below the gage; a wing dam at this point overflows at about gage height 5.5 feet. WINTER FLOW .—Discharge relation seriously affected by ice; discharge estimated by comparison with records at Sunkhaze Rips. EXTREMES OF DISCHARGE.—Maximum stage during year (water-stage recorder): 12.9 feet on May 2 (discharge, 53,800 second-feet); minimum discharge occurred at gage height of 3.47 feet at 2 a. m. January 5 (discharge, 2,470 second-feet; discharge relation affected by ice). DIVERSIONS —Flow since 1900 largely controlled by storage, principally in the lakes tributary to the West Branch. REGULATION.—The operation of a dam 1 mile above the gage and also one on the Piscataquis near its mouth and storage on the West Branch of the Penobscot do not cause diurnal fluctuation except for short periods on Sunday. Results not corrected for storage. Accuracy.—Results good, the rating curve being well defined and gage-height record reliable. COOPERATION.—Gage-height records and several discharge measurements furnished by Thomas W. Clark, hydraulic engineer, Oldtown, Maine. Several discharge measurements were made by students of the University of Maine under the direction of Prof. H. S. Boardman. Discharge measurements of Penobscot River at West Enfield, Maine, during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |--------------------------|------------------------------|--|--|--|--|-------------------------------------|---| | Oct. 3 3 7 7 10 10 29 29 | University of Maine students | Feet. 2.43 2.43 2.35 2.35 2.29 2.28 2.02 | Secft. 4,380 4,530 3,770 3,950 4,020 4,000 3,490 3,610 | Apr. 6
June 11
July 23
Sept. 16
23
23
30 | H. A. Lancaster T. W. Clark L. W. Mayhew G. C. Danforth University of Maine students do do | Feet. 3.84 4.15 4.52 2.51 3.75 3.65 | Secft. 7, 640 8, 090 9, 390 4, 300 7, 270 7, 570 6, 940 | Daily discharge, in second-feet, of Penobscot River at West Enfield, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |----------------------------|-------------------------|--|--|--|---|--|---|--|--|--|--|--| | 1
2
3
4
5 | 4,170 | 4,610
4,500
4,390
4,500
4,500 | 4,500
4,730
4,730
5,190
5,530 | 3,330
3,230
3,130
2,850
2,570 | 4,960
5,080
5,080
5,080
4,960 | 17,000
16,600
15,600
13,700
12,300 | 6,780
7,300
7,570
7,170
6,650 | 38, 400
52, 700
48, 200
47, 800
51, 000 | 11,500
11,000
10,000
9,420
8,680 | 7,040
6,910
7,040
6,520
6,260 | 7,170
6,780
6,910
7,440
7,040 | 6, 140
5, 770
5, 530
5, 420
5, 300 | | 6
7
8
9
10 | 3,950
3,730 | 4, 280
4, 170
4, 060
3, 630
3, 430 | 5,070
4,280
4,610
4,960
4,960 | 2,850
3,530
4,060
4,060
3,950 | 5,080
4,840
4,730
4,840
5,080 | 11,500
10,800
10,000
9,270
8,680 | 7, 980
8, 260
8, 680
10, 000
12, 000 | 47,800
43,700
41,000
41,400
37,400 | 8,400
7,980
7,440
7,300
7,840 | 6,390
7,170
6,910
13,500
29,300 | 7,040
7,040
6,910
6,520
7,040 | 4,840
4,960
4,840
5,300
5,300 | | 11 | 3,330
3,330 | 3,840
4,060
3,840
3,730
3,530 | 5,070
4,610
4,500
4,060
3,730 | 3,840
3,730
3,840
3,730
3,630 | 4,960
4,840
4,960
4,960
4,730 | 8, 260
7, 710
7, 040
7, 040
5, 650 | 13,300
19,700
35,400
33,200
29,000 | 32,500
28,200
26,000
23,000
21,100 | 8,260
8,120
7,710
7,040
7,570 | 24,700
19,700
18,000
16,200
14,600 | 8,830
9,120
8,260
7,170
6,780 | 5,300
5,070
4,500
4,390
4,500 | | 16
17
18
19
20 | 3, 430
3, 430 | 3,630
5,770
6,910
6,140
5,420 | 3,330
3,730
3,950
3,950
3,730 | 3,630
3,530
3,330
4,280
6,260 | 5,080
6,140
6,780
7,040
6,650 | 5,650
6,010
5,890
5,650
5,420 | 26, 800
26, 500
26, 800
26, 000
25, 200 | 18,800
18,200
16,600
16,000
15,800 | 8,540
8,830
8,830
8,680
7,840 | 13,200
12,000
12,100
11,800
11,600 | 6,390
6,780
7,040
7,040
6,650 | 4,390
4,390
4,390
4,390
4,060 | | 21 | 4,500
4,280 | 5,770
5,770
5,070
4,730
5,300 | 3,630
3,430
3,230
3,430
3,530 | 7,570
7,840
7,440
6,650
6,010 | 6,140
5,890
5,770
5,770
6,390 | 5, 190
5, 190
5, 540
5, 890
6, 650 | 24, 200
22, 500
19, 900
17, 600
16, 600 | 14,300
13,900
12,800
11,300
11,300 | 7,710
7,570
7,440
7,710
7,980 | 11, 100
10, 000
9, 570
9, 120
8, 540 | 6, 260
5, 890
6, 140
7, 040
9, 720 | 4,390
5,190
7,040
6,910
6,140 | | 26 | 3,430
3,530
3,530 | 5, 190
5, 420
5, 070
4, 500
4, 390 | 3,630
3,630
3,630
3,630
3,630
3,630 | 5,770
6,010
5,890
5,770
6,010
5, 890 | 12,600
18,800
20,100 | 6, 910
7, 570
6, 780
6, 520
6, 650
6, 650 | 17, 200
19, 300
21, 800
21, 100
20, 600 | 11,500
13,200
14,800
13,900
12,500
12,000 | 7,840
7,300
7,040
7,170
7,040 | 7,710
7,980
7,570
7,300
7,710
7,570 | 9,720
9,420
8,400
7,440
6,520
6,390 | 5,770
5,890
7,710
7,440
6,910 | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by log jam Oct. 1, 1914, and by ice from Nov. 18 to Apr. 1; discharge estimated by comparison with records at Sunk Hazerips, by means of a reduction factor obtained by comparison of records representing normal conditions. Monthly discharge of Penobscot River at West Enfield, Maine, for the year ending Sept. 30, 1915. #### [Drainage area, 6,600 square miles.] | , | D | Run-off
(depth in | | | | | |---|--|---|---|---|---|-------------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | inches on
drainage
area). | Accu- | | October November December January February March April May June July August September | 6,910
5,530
7,840
20,100
17,000
35,400
52,700
11,500
29,300
9,720 | 3,230
3,430
3,230
2,570
4,730
5,190
6,650
11,300
7,040
6,260
5,890
4,060 | 3,750
4,670
4,140
4,650
6,690
8,370
18,200
26,000
8,190
7,320
5,410 | 0.568
.708
.627
.705
1\01
1.27
2.76
3.94
1.24
1.68
1.11 | 0.65
.79
.72
.81
1.05
1.46
3.08
4.54
1.38
1.94
1.28 | A. B. B. B. A. A. A. A. A. A. | | The year | 52, 700 | 2,570 | 9,060 | 1.37 | 18.61 | | Note.—Monthly discharge in second-feet per square mile and run-off in depth in inches shown by the able do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. #### EAST BRANCH OF PENOBSCOT RIVER AT GRINDSTONE, MAINE. LOCATION.—At Bangor & Aroostook Railroad bridge half a mile south of railroad station at Grindstone, Penobscot County, one-eighth mile above Grindstone Falls, and about 8 miles above the mouth (at Medway). Drainage area.—1,100 square miles; includes 270 square
miles tributary to Chamberlain Lake. RECORDS AVAILABLE.—October 23, 1902, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGE.—Chain attached to railroad bridge; read twice a day by R. D. Porter. DISCHARGE MEASUREMENTS.—Made from railroad bridge. CHANNEL AND CONTROL.—Practically permanent; stream confined by abutments of bridge and broken by one pier at ordinary stages; velocity of current medium at moderate and high stages, but sluggish at low water. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 10.0 feet at 4.30 p.m., May 5 (discharge, from extension of rating curve, 10,000 second-feet); minimum stage recorded, 3.9 feet at 6.30 a.m. and 5 p.m. October 8 (discharge, from extension of rating curve, 160 second-feet); minimum discharge estimated as 110 second-feet on December 28 and 29. WINTER FLOW.—Discharge relation seriously affected by ice. REGULATION.—Several dams maintained at outlets of a number of lakes and ponds near source of river are regulated in the interests of log driving; during the summer and fall gates are generally left open. The basin of the East Branch since about 1840 includes about 270 square miles of territory draining into Chamberlain Lake that formerly drained into the St. John River basin, the diversion being made through what is known as the Telos canal. Results not corrected for storage and diversions. Accuracy.—Discharge relation materially affected by backwater from log jams at station and at Grindstone Falls immediately below, and by ice during winter. Results probably good for moderate and high stages but somewhat uncertain for low stages. Discharge measurements of East Branch of Penobscot River at Grindstone, Maine, during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by | Gage
height. | Dis-
charge. | |------------------|---------------------------------|-----------------------------|------------------------|--------|------------|-----------------|-----------------| | Feb. 2
Mar. 5 | Danforth and Hill
W. G. Hill | Feet.
a 5. 44
a 6. 80 | Secft.
461
1,970 | July 1 | W. G. Hill | Feet.
6.04 | Secft.
1,780 | a Discharge relation affected by ice. Daily discharge, in second-feet, of East Branch of Penobscot River at Grindstone, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Мат. | Apr. | Мау. | June. | July. | Aug. | Sept. | |----------------------------|---|-----------------------------------|--|--|-------------------------------------|---|---|---|--|--|--|---------------------------------------| | 1 | 185
185
185
185
185 | 590
560
505
505
505 | 715
560
405
382
360 | 120
130
130
140
140 | 258
455
405
382
405 | 3,510
3,140
2,700
2,280
1,960 | 480
505
533
560
590 | 3,230
3,990
5,120
6,890
9,880 | 3,890
3,800
3,800
3,050
3,420 | 1,960
2,280
1,660
1,520
1,520 | 1, 190
1, 450
1, 520
1, 380
1, 250 | 360
360
360
360
360 | | 6 | 185
185
160
185
210 | 505
480
455
455
405 | 338
315
275
240
210 | 150
160
185
198
210 | 405
430
455
430
430 | 1,740
1,520
1,380
1,250
1,130 | 650
680
750
1,660
2,790 | 9,380
8,770
8,530
8,050
7,580 | 2,620
1,320
920
1,520
1,380 | 1,520
1,520
1,250
2,620
5,990 | 1,130
1,020
970
920
1,080 | 338
295
275
275
275 | | 11 | 240
210
210
185
185 | 315
360
275
315
360 | 210
210
210
210
210
198 | 240
240
240
225
240 | 405
405
405
405
405 | 970
875
790
750
715 | 4,290
5,770
6,540
6,780
6,100 | 6,430
5,330
4,800
5,330
5,020 | 1,520
1,520
a2,070
2,620
3,510 | 4,490
2,360
2,360
2,120
1,740 | 1,380
970
750
750
750
750 | 275
258
240
240
240 | | 16.
17.
18.
19. | 185
185
a 185
a 210
a 315 | 455
1,320
750
533
430 | 172
160
160
160
160 | 258
275
295
505
750 | 505
560
680
620
560 | 680
680
650
620
560 | 5,660
5,550
5,880
5,550
4,910 | 4,390
3,600
3,140
3,990
3,230 | 3,510
3,700
3,420
3,510
3,140 | 1,380
2,040
2,280
2,040
2,040 | 680
750
750
790
680 | 240
240
240
225
210 | | 21
22
23
24
25 | 405
360
315
315
315 | 360
295
240
275
315 | 160
150
140
130
120 | 1,130
1,020
920
790
680 | 505
480
430
2,120
5,660 | 560
505
505
505
505 | 4,700
4,390
3,510
3,140
2,790 | 3, 140
2, 620
2, 790
2, 620
2, 280 | 3, 140
3, 140
3, 600
3, 510
2, 540 | 1,380
1,450
1,590
1,520
1,520 | 620
620
715
875
830 | 240
505
590
480
505 | | 26 | 275
275
275
275
275
338
590 | 360
455
560
715
920 | 120
120
110
110
120
120 | 620
590
560
455
405
315 | 5,120
4,490
4,090 | 505
533
560
560
533
505 | 2,790
3,320
3,800
3,510
2,790 | 2,960
3,050
4,290
4,190
44,240
4,290 | 2,280
2,120
1,960
1,960
1,960 | 1,520
1,520
1,190
1,130
1,130
1,020 | 790
650
533
430
405
405 | 680
1, 450
1, 190
875
790 | a Discharge interpolated. Note.—Discharge determined from a rating curve well defined between 400 and 8,000 second-feet. Discharge relation affected by ice from Nov. 20 to Apr. 11; estimates based on gage heights corrected for backwater by means of two discharge measurements and climatic data. Monthly discharge of East Branch of Penobscot River at Grindstone; Maine, for the year ending Sept. 30, 1915. #### [Drainage area, 1,100 square miles.] | | · D | Run-off | , | | | | |---|---|--|--|---|---|-------------------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June July August September | 1, 320
715
1, 130
5, 660
3, 510
6, 780
9, 880
3, 890
5, 990
1, 520 | 160
240
110
120
258
505
480
2,280
920
1,020
405
210 | 248
485
228
397
1,140
1,080
3,360
4,940
2,680
1,920
872
432 | 0. 225
. 441
. 207
. 361
1. 04
. 982
3. 05
4. 49
2. 44
1. 75
. 793
. 393 | 0. 26
. 49
. 24
. 1. 08
1. 13
3. 40
5. 18
2. 72
2. 02
. 91
. 44 | A. B. D. D. C. C. B. A. A. A. A. A. | | The year | 9,880 | 110 | 1,480 | 1. 35 | 18. 29 | | Note.—The monthly discharge in second-feet per square mile and the run-off depth in inches shown by the table do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. ## MATTAWAMKEAG RIVER AT MATTAWAMKEAG, MAINE. LOCATION.—At Maine Central Railroad bridge at village of Mattawamkeag, Penobscot County, half a mile above mouth of river. Drainage area.—1,500 square miles. RECORDS AVAILABLE.—August 26, 1902, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGE.—Chain fastened to railroad bridge; read twice a day by W. T. Mincher. DISCHARGE MEASUREMENTS.—Made from the bridge, which is slightly oblique to the current; low-water measurements made by wading at a point about a mile above station. Channel and control.—Practically permanent; channel at bridge broken by two piers. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 11.2 feet at 7 a. m. and 5 p. m. May 6 and 7 (discharge, from extension of rating curve, 16,400 second-feet); minimum stage recorded, 2.7 feet October 14 and 15 (discharge, 123 second-feet). WINTER FLOW.—Discharge relation seriously affected by ice. REGULATION.—Dams are maintained at outlets of several large lakes and ponds, but the stored water is used only for log driving. Accuracy.—Discharge relation at times affected by backwater from log jams. Results for open-water periods considered good. Discharge measurements of Mattawamkeag River at Mattawamkeag, Maine, during the year ending Sept. 30, 1915. ## [Made by W. G. Hill.] | ` | | Date. | Gage
height. | Dis-
charge. | |------------------|------|-------|-----------------------------|-------------------------| | Feb. 4
Mar. 9 |
 | ` | Feet.
a 6. 25
a 7. 96 | Secft.
754
3, 470 | Daily discharge, in second-feet, of Mattawamkeag River at Mattawamkeag, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |------------------
--|---|---|---|---|--|---|---|---|--|--|---| | 1
2
3
4 | 170
170
170
170
200 | 450
450
565
740
995 | 950
950
1,040
1,040
995 | 215
185
145
145
145 | 860
820
780
740
780 | 4,090
4,280
4,380
4,280
4,180 | 1,780
1,970
2,170
2,380
2,460 | 12,200
13,000
14,500
15,100
15,600 | 3,520
3,340
2,920
2,380
1,970 | 1,350
1,240
1,140
1,140
1,240 | 1,240
1,140
1,090
1,040
950 | 860
780
700
630
630 | | 6 | 170
170
145
145
170 | 1,040
820
860
860
860 | 950
950
905
780
740 | 145
200
305
285
265 | 820
1,040
995
950
860 | 4,090
3,900
3,710
3,430
3,000 | 2,530
2,600
2,680
2,760
2,840 | 16, 400
16, 400
15, 600
14, 600
13, 600 | 1,970
2,170
2,680
2,530
2,530 | 1,140
1,140
1,840
3,620
5,600 | 860
780
700
630
700 | 630
565
630
630
565 | | 11 | 170
170
145
123
134 | 780
665
565
565
565 | 700
565
535
505
505 | 265
230
230
200
200 | 820
780
820
860
950 | 3,000
3,000
2,920
2,680
2,380 | 4,580
6,480
7,600
9,030
9,960 | 12,600
11,700
10,100
8,640
7,220 | 2,680
2,530
2,380
2,240
2,240 | 7,350
7,350
7,480
6,720
5,920 | 780
905
1,040
1,040
950 | 565
565
505
505
505 | | 16 | 145
145
145
200
375 | 665
1,040
1,410
1,470
1,470 | 480
450
425
400
375 | 185
170
350
565
950 | 995
1,040
1,090
1,090
1,140 | 1,970
1,710
1,470
1,300
1,140 | 10,100
10,400
9,690
9,690
9,690 | 6,360
5,920
5,490
5,280
4,480 | 2,380
2,240
2,240
2,380
2,380 | 4,880
4,480
4,000
3,430
3,000 | 995
1,040
950
950
950 | 565
565
505
450
505 | | 21 | 598
630
630
565
565 | 1,470
1,470
1,350
1,350
1,240 | 350
305
305
285
265 | 950
1,040
1,040
1,04 0
995 | 1,140
1,140
1,190
1,190
1,840 | 1,090
1,090
1,090
1,040
1,090 | 9,420
8,770
7,600
6,360
6,140 | 3,710
3,340
3,340
3,000
3,000 | 2,240
2,100
1,840
1,780
1,410 | 3,000
2,840
2,530
2,240
1,900 | 950
950
950
950
950
1,040 | 505
630
740
860
950 | | 26 | 480
505
450
450
400
450 | 1,140
1,240
1,240
1,140
1,040 | 265
265
265
265
265
265
265 | 950
950
950
905
905
860 | 2,680
3,900
4,090 | 1,140
1,190
1,240
1,350
1,470
1,590 | 5,920
6,720
7,600
9,030
10,400 | 3,080
3,620
4,090
3,900
3,900
3,710 | 1,350
1,350
1,350
1,470
1,470 | 1,710
1,590
1,470
1,350
1,240
1,240 | 1,140
1,240
1,240
1,140
1,040
950 | 1,090
1,300
1,410
1,650
1,710 | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice $\,$ Dec. $\,$ 5 to Apr. $\,$ 9; estimates based on gage heights corrected for backwater by means of two discharge measurements and climatic data. Monthly discharge of Mattawamkeag River at Mattawamkeag, Maine, for the year ending Sept. 30, 1915. [Drainage area, 1,500 square miles.] | | D | Run-off | | | | | |--|--|--|--|---|--|-------------------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June July August. September | 1,470
1,040
1,040
4,090
4,380
10,400
16,400
3,520
7,480
1,240 | 123
450
265
145
740
1,040
1,780
3,000
1,350
1,140
630
450 | 295
985
560
515
1, 260
2, 400
6, 310
8, 500
2, 200
3, 070
979
757 | 0. 197
. 657
. 373
. 343
. 840
1. 60
4. 21
5. 67
1. 47
2. 05
. 653
. 505 | 0. 23
. 73
. 43
. 40
. 87
1. 84
4. 70
6. 54
1. 64
2. 36
75
56 | A. A. D. D. C. C. B. A. A. A. A. A. | | The year | 16, 400 | 123 | 2,320 | 1. 55 | 21.05 | | #### PISCATAQUIS RIVER NEAR FOXCROFT, MAINE. LOCATION.—At Low's highway bridge, about halfway between Guilford and Foxcroft, Piscataquis County, three-fourths mile above the mouth of Black Stream and 3 miles below Mill Stream. Drainage area.—286 square miles. RECORDS AVAILABLE.—August 17, 1902, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. Gage.—Staff attached to left abutment of bridge; read to tenths twice a day by A. F. D. Harlow. DISCHARGE MEASUREMENTS.—At medium and high stages made from the bridge; at low stages made by wading either above or below the bridge. CHANNEL AND CONTROL.—Practically permanent; banks are high and are overflowed only during extreme floods. Extremes of discharge.—Maximum stage recorded during year, 8.8 feet at 4.30 p. m. February 26 (discharge, from extension of rating curve, 9,500 second-feet); minimum stage recorded, 1.3 feet at 7 a. m. October 6 (discharge, 12 second-feet). WINTER FLOW.—Discharge relation affected by ice during some winters; open-water rating curve used during winter of 1914-15. REGULATION.—The stream is used to develop power at several manufacturing plants above the station. Accuracy.—Discharge relation at low stages considerably affected by the irregular use of the water at the mills; during some winters it, is also affected by ice; at times affected by backwater from log jams, although little log driving is now done on the river. No discharge measurements were made during the year. Daily discharge, in second-feet, of Piscataquis River near Foxcroft, Maine, for the year ending Sept. 30, 1915. | | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |---|----------------------------|----------------------------------|---------------------------------|--------------------------------------|--|---|--|---|---|-------------------------------|--|--|-------------------------------------| | | 1 | 19
19
19
19
19 | 51
51
58
58
58 | 90
90
90
318
244 | 164
180
180
180
318 | 1, 210
674
674
674
674
604 | 5, 080
4, 520
3, 970
3, 610
3, 020 | 470
502
536
374
502 | 7,510
6,130
3,880
3,100
2,420 | 267
90
90
64
51 | 100
180
180
180
267 | 148
220
220
220
220
220 | 406
374
374
346
318 | | | 6 | 15
19
22
19
19 | 24
24
51
40
19 | 244
148
136
136
136 | 318
406
292
604
674 | 604
604
536
536
980 | 2,490
2,220
1,720
1,720
1,780 | 536
502
858
1,110
1,720 | 1,620
1,510
1,300
1,210
1,160 | 64
58
58
58
58 | 267
220
220
3,520
2,640 | 267
-267
638
638
746 | 267
267
267
318
318 | | | 11 | 24
24
22
22
22
22 | 19
19
19
19
19 | 100
58
58
72
100 | 938
1,020
782
782
980 | 980
980
709
604
898 | 1,780
1,720
1,110
1,020
1,020 | 1,720
4,700
7,110
3,350
2,150 | 938
746
709
536
502 | 58
58
51
58
58 | 1,460
980
709
437
374 | 746
674
437
437
709 | 180
180
180
148
148 | | • | 16 | 28 | 100
638
437
292
180 | 136
136
72
58
64 | 470
346
782
858
2,020 | 1,210
1,720
1,670
1,510
1,300 | 782
858
858
. 709
604 | 2,080
2,560
3,020
3,020
3,020 | 502
470
470
470
470
374 | 72
136
136
100
58 | 536
536
569
569
536 | 1,510
1,110
782
569
502 | 148
318
292
292
318 | | | 21
22
23
24
25 | 90
123
90
90
58 | 64
123
51
51
51 | 51
58
164
164
58 | 2,280
2,280
1,960
1,210
1,210 | 1,210
858
746
437
858 | 437
569
604
604
502 | 3,100
2,860
2,220
1,560
1,670 | 374
374
318
346
346 | 58
58
58
374
374 | 470
267
164
200
164 | 374
374
604
2, 220
1, 720 | 267
1,300
1,110
746
437 | | • | 26 | 123 | 51
51
22
17
51 | 180
220
220
148
58
58 | 1,300
1,300
1,350
1,460
1,210
1,210 | 7,810
7,610
5,940 |
1,020
980
746
709
536
536 | 2,020
2,150
1,620
1,020
2,280 | 346
346
346
346
346
220 | 374
318
244
81
81 | 164
136
136
164
164
164 | 1,350
1,110
858
709
638
536 | 502
569
569
406
292 | Note.—Discharge determined from a rating curve well defined between 20 and 4,000 second-feet, and verified by several discharge measurements made in October, 1915. Discharge relation possibly affected by ice at various times during January and February and by logs Sept. 22-30; open-water rating applied throughout the year. Monthly discharge of Piscataquis River near Foxcroft, Maine, for the year ending Sept. 30, 1915. #### [Drainage area, 286 square miles.] | | D | ischarge in s | econd-feet. | • | Run-off | | |---|---|--|--|---|---|-------------------------------------| | Month. | Maximum Minimum Maan Square drain | | (depth in
inches on
drainage
area). | Accu-
racy. | | | | October November December January, February March April May June July August September The year | 638
318
2, 280
7, 810
5, 080
7, 110
7, 510
374
3, 520
2, 220
1, 300 | 15
17
51
164
437
437
374
220
51
100
148
148 | 45
90
125
938
1,580
1,540
2,010
1,270
122
538
695
389 | 0.157
.315
.437
3.28
5.52
5.38
7.03
4.44
.426
6.1.88
2.43
1.36 | 0.18
.35
.50
3.78
5.75
6.20
7.84
5.12
.48
2.17
2.80
1.52 | A. A. B. C. C. B. B. B. A. A. A. A. | #### KENDUSKEAG STREAM NEAR BANGOR, MAINE. LOCATION.—At highway bridge at Sixmile Falls, about 6 miles northwest of Bangor, Penobscot County, and 7 miles below Black Stream. Drainage area.—191 square miles. During freshets a part of the water of Souadabscook Stream finds its way through an artificial cut into Black Stream. RECORDS AVAILABLE.—September 15, 1908, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGE.—Chain attached to the bridge; read twice a day by Fred Cort. DISCHARGE MEASUREMENTS.—Made from the bridge. CHANNEL AND CONTROL.—Practically permanent. WINTER FLOW.—Discharge relation affected by ice. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 9.9 feet at '7.10 a. m. February 27 (discharge from extension of rating curve and correction for backwater from ice, 4,250 second-feet); minimum stage recorded, 1.3 feet October 11-16, inclusive (discharge, from extension of rating curve, 7 second-feet). DIVERSIONS.—A number of years ago an artificial cut was made for log driving through a low divide between Souadabscook Stream and Black Stream, which enters the Kenduskeag about 7 miles above the gaging station. During high stages of the Sousdabscook part of its waters finds its way through the artificial cut into the Kenduskeag; at low stages of the Souadabscook all the flow continues down its own channel; Black Stream probably sends its waters only to the Kenduskeag. Accuracy.—Results considered good for ordinary stages, uncertain above 2,500 second-feet. Discharge measurements of Kenduskeag Stream near Bangor, Maine, during the year ending Sept. 30, 1915. [Made by W. G. Hill.] | Date. | Gage
height. | Dis-
charge. | Date. | Gage
height. | Dis-
charge. | |--------|-------------------------|-----------------------|--------|-----------------|-----------------| | Feb. 3 | Feet.
a 3.00
8.25 | Secft.
57
3,080 | May 21 | Feet.
2.70 | Secft.
181 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Kenduskeag Stream near Bangor, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |-----------------------|----------------------------|-----------------------------|----------------------------|---|--|-------------------------------------|---|---------------------------------|--|--|---------------------------------| | 1
2
3
4
5 | 12
12
12
12
12 | 45
45
34
34
34 | 30
25
34
45
51 | | | 431
366
398
398
431 | 2,390
3,680
3,140
2,260
2,020 | 128
110
119
119
119 | 119
119
137
119
119 | 166
146
188
188
166 | 262
211
211
177
177 | | 6 | 12
12
72
12
12 | 34
34
34
34
34 | 57
57
57
57
57 | 895
a 795
a 655
538 | | 465
520
557
722
795 | 1,500
1,240
1,210
1,090
870 | 102
86
71
57
64 | 137
137
177
2, 180
3, 180 | 146
156
156
211
211 | 166
156
146
128
119 | | 11 | 7
7
7
7 | 25
25
30
34
45 | 45
45
45
57
71 | a 501
a 431
a 398
a 335
a 305 | | 820
950
1,150
1,470
745 | 655
596
576
414
335 | 102
110
78
110
110 | 2,820
1,370
1,000
655
520 | 166
223
211
249
223 | 137
137
110
78
64 | | 16 | 7
12
18
25
25 | 64
71
71
94
102 | 71 | a 249
223
a 538
a 1,060
1,640 | a 199 | \655
845
795
845
820 | 305
290
276
236
223 | 110
86
128
177
177 | 448
465
414
335
305 | 262
557
501
398
276 | 110
102
94
71
71 | | 21 | 25
34
34
34
34 | 119
94
86
78
94 | | a 1,370
a 1,060
a 845
615 | 199
a 210
a 221
431
a 448 | 678
431
414
305
398 | 199
177
156
146
156 | 211
211
166
146
128 | 236
211
188
166
166 | 276
305
414
520
465 | 51
119
156
177
177 | | 26 | 34
30
30
40
45 | 102
94
71
57
45 | | | a 466
a 484
501
a 513
a 526
538 | 448
700
655
655
895 | 156
223
320
305
262
166 | 137
128
110
119
137 | 199
177
156
156
166
156 | 615
845
795
501
305
262 | 177
223
211
223
199 | a Estimated. Monthly discharge of Kenduskeag Stream near Bangor, Maine, for the year ending Sept. 30, 1915. [Drainage area, 191 square miles.] | | D | ischarge in se | econd-feet. | _ | Run-off | | |---|---|--|--|--|--|--| | Month. | Maximum. | Minimum. | M ean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June July August September | 119
71
1,640
4,250
2,180
1,470
3,680
211
3,180
845 | 7
25
25
18
57
156
- 305
146
57
119
146
51 | 20. 2
58. 8
47. 2
458
608
456
659
825
122
540
326
148 | 0. 106
. 308
. 247
2. 40
3. 18
2. 39
3. 45
4. 32
. 639
2. 83
1. 71 | 0. 12
. 34
. 28
2. 77
3. 31
2. 76
3. 85
4. 98
. 71
3. 26
1. 97
. 86 | B. B. C. C. D. C. B. B. B. B. B. B. B. B. B. | | The year | 4,250 | 7 | 355 | 1.86 | 25. 21 | | Note.—Discharge determined from a rating curve well defined between 10 and 1,000 second-feet but uncertain above 2,500 second-feet. Discharge relation affected by ice Dec. 17 to Jan. 6 and Jan. 25 to Mar. 19; estimates based on gage heights corrected for backwater by means of one discharge measurement and climatic data. ### ST. GEORGE RIVER BASIN. #### ST. GEORGE RIVER AT UNION, MAINE. Location.—200 feet below tailrace of electric plant of Dirigo Power Co., half a mile below outlet of Sennebec Lake and a mile above Union, Knox County. Drainage area.—116 square miles. RECORDS AVAILABLE.—December 11, 1913, to December 31, 1914. GAGE.—Vertical staff gage bolted to tree on left bank; read once a day by G. E. Hills. DISCHARGE MEASUREMENTS.—Made from a cable about 50 feet above gage. CHANNEL AND CONTROL.—Rock and gravel; shifting. REGULATION.—Dam of Dirigo Power Co. is about 1,000 feet above station; on the completion of the electric plant, now in course of construction, the regimen of the stream will be more or less affected by night storage. Accuracy.—Results considered good for period for which they are published. Discharge measurements of St. George River near Union, Maine, during the year ending Sept. 30, 1915. | Date. | e. Made by— | | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |-------------------------------|----------------|---|-------------------------------------|-----------------------------|------------|-------------------------------|------------------------------------| | Oct. 6
Apr. 22
22
23 | G. C. Danforth | Feet.
1. 60
3. 68
3. 68
3. 65 |
Secft.
3. 2
168
153
154 | Apr. 23
May 4
4
24 | W. G. Hill | Feet. 3. 64 4. 80 4. 80 3. 60 | Secft.
157
642
637
159 | Daily discharge, in second-feet, of St. George River near Union, Maine, for the period Oct. 1 to Dec. 31, 1914. | Day. | Oct. Nov. | | Dec. | Day. | Oct. | Nov. | Dec. | | |------|----------------------------|----------------------------|----------------------------|------|----------------------------|----------------------------|----------------------------------|--| | 1 | 15
15
15
15
15 | 13
13
15
15
15 | 13
21
13
21
13 | 16 | 13
13
15
15
15 | 13
15
13
15
15 | . 37
68
68
68
68 | | | 6 | 3
15
15
15
15 | 15
13
10
10
13 | 13
29
15
29
15 | 21 | 18
18
18
15 | 15
13
13
13
13 | 62
62
62
62
62 | | | 11 | 15
13
13
13
13 | 15
15
15
13
13 | 21
33
33
21
21 | 26 | 13
13
13
10
10 | 10
10
10
10
10 | 62
62
62
56
56
56 | | Note.—Discharge determined from a rating well defined for period for which it was used. Discharge relation probably not affected by ice. Monthly discharge of St. George River near Union, Maine, for the period Oct. 1 to Dec. 31, 1914. #### [Drainage area, 116 square miles.] | , | D | Run-off | | | | |---------------------|----------------|---------------|-------------------------|------------------------|--| | Month. | Maximum. | Mínimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | | October
November | 18
15
68 | 3
10
13 | 13. 8
13. 0
41. 0 | 0.119
.112
.353 | 0. 14
. 12
. 41 | #### KENNEBEC RIVER BASIN. #### MOOSEHEAD LAKE AT EAST OUTLET, MAINE. LOCATION.—At wharf at east outlet of lake, about 8 miles from Kineo, Somerset County. Drainage area.—1,240 square miles. RECORDS AVAILABLE.—April 1, 1895, to September 30, 1915. GAGE.—Staff at end of boat landing; two datums have been used at east outlet; the first (or original datum) is at elevation 1,011.30 feet above mean sea level and approximately 10 feet below sills of outlet gates; gage is read to this datum; the second, to which all gage readings published to and including 1911 have been referred, is 10 feet higher; that is, the zero is at the sill of the gates; as it is believed that low water may go below the sill of the gates (zero of second datum), gage heights since 1912 are published as read—that is, to original datum. REGULATION.—The lake is regulated to a capacity of 23,735,000,000 cubic feet. The dam at the east outlet is controlled by 35 gates; the sills of 15 old gates are at gage height 10 feet (original datum) and the sills of 20 gates at gage height 8 feet (original datum). At extreme low stages the flow from the lake is controlled not by the gates but by a bar above the dam at an approximate gage height of 9 feet (original datum). The records show only fluctuations in the level of the lake and are used in the studies of regulation of the lake and in computing the natural flow of the Kennebec at The Forks station. COOPERATION.—Record furnished by Hollingsworth & Whitney Co. Daily gage height, in feet, of Moosehead Lake at east outlet, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |--------------------------|----------------|----------------|----------------|-----------------|----------------|-----------------|---------------|------------------|----------------|--------|--------------|----------------| | 1
2 | 12. 4 | 12. 0
12. 0 | 11.8 | 10.0 | 11.2 | 11. 25
11. 2 | 11.75 | 14. 45 | 15. 6 | 14.9 | 14.6 | 14.7 | | 4
5 | | 11.95 | 11.8 | 11.5 | 11. 2 | 11.3 | 11.7 | 14.9 | 15. 6 | 14.85 | 14, 55 | 14.7 | | 6
7
8
9. | 12. 15 | | 11.8 | 11. 45
11. 4 | 11. 2 | 11. 45 | 11.75
11.8 | 15.05 | 15, 5
15, 5 | | 14. 35 | 14. 55
14.5 | | 10 | | | 11. 75 | 11. 35 | 11. 2
11. 2 | 11. 5
11. 55 | 12.0 | 15. 6
15. 55 | 15. 4 | | | 14, 5 | | 13
14
15 | 12.1 | 11.8 | 11.75 | 11.35 | 11. 1 | 11.6 | 12.3 | 15. 65 | | 15. 15 | 14.3
14.4 | 14. 4 | | 16
17
18. | 11.95 | 11.8
11.8 | 11. 7
11. 7 | 11. 25 | 11. i | 11.65 | 12.5 | 15. 65 | 15.35
15.35 | 15. 2 | 14, 5 | 14.3 | | 19
20 | 12. 1
12. 1 | 11.8 | 11 05 | 11.2 | 11.05 | | 12.8
12.95 | | | 15. 2 | 14.5 | 14. 2 | | 21.
22.
23.
24. | 12.1 | 11.9 | | 11.3 | 11.0
11.0 | 11.65
11.65 | 13. 1 | 15. 7 | 15. 25 | | 14. 45 | 14. 2 | | • | 12. 1
12. 0 | 11.9
11.9 | | ••••• | 11.05 | 11.7 | 13.35
13.7 | 15. 75
15. 75 | 15, 1 | 14.9 | 14.7 | 14.4 | | 29.
30.
31. | | 11.8 | | 11.3 | ••••• | | 14.0 | | | 14.7 | 14.7 | 14. 15 | #### KENNEBEC RIVER AT THE FORKS, MAINE. Location.—At wooden highway bridge about 2,000 feet above Dead River, Somerset County. Drainage area.—1,570 square miles. RECORDS AVAILABLE.—September 28, 1901, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. Gages.—Chain on bridge, a vertical staff on timber retaining wall on left bank 75 feet above bridge, and a Barrett & Lawrence water-stage recorder, used during summer months only, on left abutment; recorder, set to read the same as chain gage at low water, but gives lower readings than chain gage at high water. Chain gage read once a day by S. C. Durgin. DISCHARGE MEASUREMENTS.—Made from the bridge. CHANNEL AND CONTROL,—Practically permanent. Extremes of discharge.—Maximum stage recorded during year, 6.7 feet at 7 a. m. May 7 (discharge, 9,520 second-feet); minimum stage recorded, 0.5 foot at 7 a. m. April 5 (discharge, 300 second-feet). WINTER FLOW.—Discharge relation seriously affected by ice. REGULATION.—Flow regulated by storage in Moosehead Lake. During May, June, July, and August the operation of Indian Pond for log driving causes a large diurnal fluctuation. Records of monthly discharge have been reduced to natural flow by adding or subtracting the amount of water stored in or released from Moosehead Lake. Discharge measurements of Kennebec River at The Forks, Maine, during the year ending Sept. 30, 1915. # [Made by W. G. Hill.] | | • | Date. | | \ | Gage
height. | Dis-
charge. | |--------------------|---|-------|------|---|-------------------------|----------------------| | Feb. 24
June 26 | | |
 | | Feet.
a 2.62
1.00 | Secft.
916
508 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Kennebec River at The Forks, Maine, for the year ending Sept. 30, 1915. | | · | | | 1 | · · | 1 | 1 | ī | r | ī | l | ī | |------------------|--|--|--|---|--|--|---|--|---|--|---|---| | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | | 1
2
3
4 | 1,360
1,360
1,360
1,360
1,290 | 1,180
1,180
1,180
1,100
1,000 | 1,070
1,070
1,160
1,160
1,160 | 1,240
1,160
1,070
1,070
1,430 | 770
770
770
770
840
880 | 915
915
915
915
915
915 | 770
700
635
370
300 | 1,330
1,200
2,460
4,150
4,690 | 2,740
2,720
2,710
2,790
2,500 | 2,680
2,550
2,470
2,630
2,550 | 2,640
2,700
2,740
2,660
3,160 | 2,410
2,540
2,460
2,160
1,970 | | 6 | | 1,090
1,090
1,090
1,090
1,090 | 1,240
1,240
1,240
1,110
1,110 | 1,240
1,200
1,160
1,030
990 | 840
840
770
770
770 | 880
880
915
770
700 | 320
320
345
450
510 | 4,320
4,500
4,690
3,980
3,810 | 2,450
2,510
2,550
2,550
2,560 | 2,610
3,160
4,070
1,940
1,790 | 3,060
3,120
2,440
2,500
3,200 | 1,910
1,850
1,780
1,740
1,530 | | 11 | 1,180
1,180
1,180
1,130 | 1,050
1,050
1,050
1,050
1,050
1,050 | 1,110
1,070
1,110
1,160
1,160 | 990
990
990
915
840 | 840
840
770
840
840 | 635
600
600
570
570 | 700
1,430
3,320
2,880
2,080 | 3,610
5,080
4,870
4,850
4,450 | 2,580
2,490
2,480
2,600
2,770 | 1,450
2,690
3,860
4,320
4,050 | 4, 260
1, 720
1, 160
980
910 | 1,740
1,970
1,970
2,300
1,890 | | 16 | | 1,070
1,070
770
570
450 | 1,160
1,160
1,240
1,240
1,240 | 770
700
770
950
915 | 840
915
915
840
950 | 635
700
770
950
990 | 2,020
2,200
2,270
2,140
2,460 | 4,110
3,760
3,670
3,850
3,920 | 2,530
2,490
2,840
1,820
2,350 | 4,040
3,650
3,890
3,730
3,870 | 1,050
1,000
885
790
1,440 | 2,000
2,550
2,540
2,190
2,120 | | 21 | 1,490
1,260
1,260
1,260
1,260 | 840
990
1,110
1,110
1,070 | 1.240
1,240
1,160
1,070
950 | 915
915
915
880
840 | 840
840
840
840
990 | 1,070
1,070
1,070
880
770 | 2,200
1,910
1,740
990
1,160 | 3,380
2,490
2,950
3,160
2,600 | 1,830
2,600
2,780
2,010
2,400 | 3,960
3,750
3,480
3,150
3,300 | 1,660
1,630
1,380
1,040
910 | 2,150
2,530
1,310
830
680 | | 26 | 1,260
1,210
1,180
1,110
1,180
1,180 | 1,070
1,070
1,160
1,160
1,160
| 1,240
1,280
1,330
1,380
1,430
1,330 | 840
840
770
770
770
770 | 1,030
950
915 | 510
395
570
770
770
770 | 1,430
1,740
1,240
2,270
2,200 | 2,940
3,720
3,700
2,790
2,930
2,670 | 3,180
2,570
2,510
2,680
2,710 | 3,430
3,490
3,670
3,060
3,230
2,810 | 845
805
700
665
635
1,590 | 600
610
1,000
1,470
2,070 | NOTE.—Discharge determined from a well-defined rating curve, a table of relation being used to convert discharge rating for chain gage to a corresponding rating for water-stage recorder. Discharge Nov. 16 to May 10 and Sept. 9-11 based on chain-gage readings; that for rest of year on water-stage recorder. Discharge relation affected by ice from Dec. 23 to Mar. 21; estimates based on gage heights corrected for backwater by means of one discharge measurement and climatic data. Monthly discharge of Kennebec River at The Forks, Maine, for the year ending Sept. 30, 1915. #### [Drainage area, 1,570 square miles.] | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | Dischar | ge in secon | d-feet. | | |--|--|--|--|--|---| | Mean. Per square mile. October. 1,250 720 0.459 0.5 November 1,040 800 .510 5 December 1,190 840 .535 6 January. 957 665 .424 .4 February 852 787 .501 .5 March. 787 1,370 .873 1.0 April. 1,440 4,230 2.99 3.0 May. 3,570 5,470 3.48 4.0 June 2,540 1,800 1.15 1.2 July 3,200 2,780 1.77 2.0 Argust 1,750 1,810 1.15 1.3 September 1,830 1,160 .739 8 | | Ohmannad | | | run-off
(depth in
inches on | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | · · | | Mean. | square | | | The year | November December January. February March April May June July August | 1,040
1,190
957
852
787
1,440
3,570
2,540
3,200
1,750 | 800
840
665
787
1,370
4,230
5,470
1,800
2,780
1,810 | .510
.535
.424
.501
.873
2.69
3.48
1.15
1.77
1.15 | 0. 53
. 57
. 62
. 49
. 52
1. 01
3. 00
4. 01
1. 28
2. 04
1. 33
. 82 | | | • | | 1,880 | 1. 20 | 16. 22 | ## KENNEBEC RIVER AT WATERVILLE, MAINE. LOCATION.—At dam and mill of Hollingsworth & Whitney Co. at Waterville, Kennebec County, 2 miles above Sebasticook River and about 3½ miles above Messalonskee Stream. Drainage area.—4,270 square miles. RECORDS AVAILABLE.—March 22, 1892, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGES.—Rod gages in pond above dam and in tailrace of mill. DETERMINATION OF DISCHARGE.—Discharge computed from flow over dam, through the logway, and through wheels of the mill. When flow is less than about 3,500 second-feet all the water is used through the wheels. WINTER FLOW.—Discharge relation not, as a rule, affected by ice; in most years winter flow passes through wheels of mill. REGULATION.—Numerous power plants and much storage above station; results not corrected for storage. COOPERATION.—Records obtained and estimates of daily discharge furnished by Hollingsworth & Whitney Co. Daily discharge, in second-feet, of Kennebec River at Waterville, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |------|---|---|------------------------------|---|---------------------------|-------------------------------------|----------------------------|--------------------------------------|--------------------------|--|---|---| | 1 | 1,480
1,550
1,840
ab1,980
2,120 | a 792
2,610
2,720
2,170
2,440 | 3,320
3,620 | 1,790
2,010
4,946
1,830
1,950 | 2,380
2,320
2,220 | 13,800
12,700
11,900 | 6,710
7,890 | 44,200
35,800
31,700 | 9,790
9,090
4,160 | 4,000
3,770
4972 | 6,860
6,620 | 3,810
4,740 | | 6 | 1,810
2,240
1,990
1,960
1,600 | 2,370 | 3,900
3,230 | 3,120
3,230 | a 1,900
3,140
2,700 | 8,500
7,290 | 7,240
6,850
8,690 | 26,400
23,800
26,100 | 4,200
4,230 | 5,440
5,220
13,900 | 5,490
a 5,320
5,770 | 3,900
3,000
3,490
2,970
2,880 | | 11 | 2,050
1,910 | 1,390
2,030 | 1,670
a 825
1,750 | 3,240
2,590
2,360
2,400
2,350 | 2,490
2,480
a 955 | 4,550
4,040
a 767 | 28,800
30,600 | 24,000
18,600
9,090 | 4,090
a2,080
5,000 | 9,300
10,800
10,500 | 8,810
6,360 | a 1,230
3,670 | | 16 | 1,660
a 840 | 3,830
4,840
3,730 | 3,310
1,160
2,560 | 2,320
a 585
2,680
2,600
4,430 | 3,530 | 3,010
3,780
3,020 | 19,900
24,500
26,000 | 15, 100
14, 100 | 4,220
4,090
4,340 | 10,100
a 8,770
10,600 | 5,610
5,630 | 2,580
2,860
3,180
a 998
4,190 | | 21 | 3,610
4,840
3,650
2,710
a 1,440 | 2,670
2,700 | 2,320
1,790
1,130 | 5,260
4,980
4,090
a 1,340
3,430 | 3,600
2,690
2,650 | 5,660
6,190 | 22,300
17,400
14,800 | 18,300
16,100 | 5,950
5,120
3,710 | 7,500 | 4,030
a 641
4,700
4,440
7,720 | 3,650
3,760
6,240
5,400
4,120 | | 26 | 3,290 | 2,730
2,600 | a 1, 160
1, 810
2, 120 | 2,620
2,710
2,640 | | 14,000
a 6,020
7,290
6,840 | 22,600
23,800
22,500 | 17,500
12,800
14,100
49,430 | 5,140
3,980
3,940 | 6,840
6,510
5,580
6,170
4,800
5,320 | 5,370
a3,330
3,800 | a 963
3,910
2,360
2,540
1,900 | a Sunday. b Estimated. Monthly discharge of Kennebec River at Waterville, Maine, for the year ending Sept. 30, 1915. #### [Drainage area, 4,270 square miles.] | | D | ischarge in s | econd-feet. | | Run-off
(depth in
inches on
drainage
area). | | |---|---|---|--|--|--|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | | | | October November December January February March April May June July August September | 4,840
3,900
5,260
31,600
16,700
41,700
44,200
13,900
39,700
16,200 | 840
503
547
585
834
767
3,770
9,090
692
641
963 | 2, 190
2, 170
2, 190
2, 560
4, 820
6, 950
17, 800
20, 900
4, 700
8, 350
6, 010
3, 290 | 0. 513
. 508
. 513
. 600
1. 13
1. 63
4. 17
4. 90
1. 10
1. 96
1. 41 | 0.59
.57
.59
.69
1.188
4.65
5.65
1.23
2.26
1.63 | | | The year | | 503 | 6,840 | 1. 60 | 21.78 | | Note.—The monthly discharge in second-feet per square mile and the run-off in depth in inches shown by the table do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. #### DEAD RIVER AT THE FORKS, MAINE. LOCATION.—One-eighth mile above farmhouse of Jeremiah Durgin, 1½ miles west of The Forks, Somerset County. Drainage area.—878 square miles. RECORDS AVAILABLE.—September 29, 1901, to August 15, 1907; March 16, 1910, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGE.—Staff bolted to large bowlder on left bank; read twice a day by Eva M. Forsythe. DISCHARGE MEASUREMENTS.—Made from cable 700 feet above gage. CHANNEL AND CONTROL.—Practically permanent. WINTER FLOW.—Discharge relation affected by ice. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 5.35 feet at 2.30 p.m. February 27 (discharge relation affected by ice); maximum discharge during year, 8,920 second-feet at 3.30 p.m. April 26; minimum stage recorded during year, 0.6 foot, October 1, 2, 3, 4, and 5 (discharge, from extension of rating curve, 100 second-feet). REGULATION.—A number of dams on lakes above; used solely for log driving. Accuracy.—Results considered good for open-water periods. Discharge measurements of Dead River at The Forks, Maine, during the year ending Sept. 30, 1915. ##
[Made by W. G. Hill.] | Date. | Gage
height. | Dis-
charge. | |---------|---------------------------|----------------------| | Feb. 25 | Feet.
a 3. 14
1. 00 | Secft.
386
366 | Daily discharge, in second-feet, of Dead River at The Forks, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------|--|---------------------------------|--|--|--|---|---|---|--|--|---|---| | 1 | 130
100
130
130
130 | 370
610
462
462
462 | 780
780
720
665
610 | 510
370
240
240
240 | 415
415
415
415
415 | 5,530
5,240
5,100
4,970
4,840 | 2,030
1,860
1,700
1,540
1,390 | 3,240
7,130
3,040
4,840
4,710 | 325
370
415
415
510 | 510
569
610
510
510 | 1,390
1,240
1,320
1,540
1,240 | 510
510
415
370
325 | | 6 | 160
160
240
240
325 | 510
462
370
415
415 | 560
510
462
415
415 | 240
240
462
720
510 | 510
610
720
665
560 | 4,710
4,220
3,770
3,340
3,240 | 1,240
1,390
1,620
2,120
2,380 | 3,340
3,440
3,660
5,680
3,880 | 560
610
610
610
610 | 510
415
665
2,290
1,780 | 965
1,100
965
1,320
2,750 | 32 5
370
415
415
415 | | 11 | 415
370
325
282
282 | 415
415
510
370
325 | 560
780
665
510
325 | 325
160
160
160
160 | 510
510
510
510
510
510 | 2,840
2,560
2,380
2,120
1,940 | 3,040
3,140
7,130
5,980
2,470 | 2,030
1,940
1,700
1,320
1,540 | 720
720
720
720
720
665 | 5,980
6,140
4,580
5,530
4,970 | 4,100
3,040
2,120
1,620
1,390 | 415
415
415
462
370 | | 16 | 282
325
370
462
1,030 | 370
510
610
720
370 | 325
370
510
610
720 | 160
160
160
370
610 | 160
160
160
160
160 | 1,700
1,860
2,030
2,200
2,380 | 2,030
4,710
4,840
2,840
2,380 | 1,540
1,240
902
665
415 | 610
510
510
415
415 | 4,710
3,240
1,780
1,780
1,700 | 1,620
1,540
1,390
1,170
1,100 | 370
370
370
325
325 | | 21 | 1,320
965
840
720
720 | 370
370
415
462
462 | 1,030
720
665
415
415 | 965
415
415
415
415 | 160
160
160
200
240 | 2,560
2,380
2,380
2,290
2,290
2,290 | 4,840
4,100
3,660
3,770
3,880 | 415
780
902
780
610 | 415
415
415
462
415 | 1,460
1,390
1,390
1,100
965 | 902
415
610
840
1,240 | 325
560
780
665
610 | | 26 | 560
415
560
1,030
370
780 | 415
510
780
720
840 | 415
415
415
415
560
665 | 415
415
415
415
415
415 | 2,380
6,140
5,830 | 2,200
2,200
2,200
2,200
2,200
2,200
2,200 | 4,710
4,580
2,470
2,750
2,560 | 560
510
510
510
462
370 | 370
325
415
415
415 | 840
1,240
1,240
1,100
1,100
1,620 | 1,030
965
780
610
510
415 | 462
462
325
325
325 | Note.—Discharge determined from a fairly well-defined rating curve. Discharge relation affected by ice Dec. 5-10 and Dec. 24 to Apr. 9; estimates based on gage heights corrected for backwater by means of one discharge measurement and climatic data. Monthly discharge of Dead River at The Forks, Maine, for the year ending Sept. 30, 1915. [Drainage area, 878 square miles.] | | D | ischarge in se | cond-feet. | | Run-off | | |---|--|--|---|---|--|-------------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accuracy. | | October November December January February March April May June July August | 840
1,030
965
6,140
5,530
7,130
7,130
720
6,140
4,100 | 100
325
325
160
160
1,700
1,240
370
325
415 | 457
483
562
365
848
2,970
3,100
2,020
2,020
2,010
1,330 | 0.521
.550
.640
.416
.966
3.38
3.53
2.30
.573
2.29
1.51 | 0.60
.61
.74
.48
1.00
3.90
3.94
2.65
.64 | B. B. C. D. D. C. A. A. A. A. | | September | | 325 | 1,260 | 1.44 | 19.48 | В. | #### SANDY RIVER NEAR FARMINGTON, MAINE. LOCATION.—At Fairbanks highway bridge, 3 miles above Farmington, Franklin County. Drainage area.—270 square miles. RECORDS AVAILABLE.—July 11, 1910, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGE.—Chain attached to bridge; read once a day by L. A. Daggett. DISCHARGE MEASUREMENTS.—Made from the bridge. CHANNEL AND CONTROL.—Sand and gravel; probably shifting. WINTER FLOW.—Discharge relation affected by ice. REGULATION.—No storage basins above station; the water-power dam at Phillips may affect flow at station slightly. Discharge estimates withheld because of uncertainties regarding gage heights. Discharge measurements of Sandy River near Farmington, Maine, during the year ending Sept. 30, 1915. | Date. | Made by | Gage
height. | Dis-
charge. | |--|--|---|--| | Feb. 27
Apr. 14
May 13
June 29
July 14 | W. G. Hill do Pierce and Danforth W. G. Hill | Feet.
a 9.66
5.52
3.70
2.51
3.55 | Secft,
2,230
1,540
380
95
382 | a Discharge relation affected by ice. ## SEBASTICOOK RIVER AT PITTSFIELD, MAINE. Location.—At steel highway bridge just above Maine Central Railroad bridge in Pittsfield, Somerset County. Drainage area.—320 square miles. RECORDS AVAILABLE.—July 27, 1908, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGE.—Chain attached to highway bridge; read twice a day by C. D. Morrill. DISCHARGE MEASUREMENTS.—Made from highway bridge. CHANNEL AND CONTROL.—Practically permanent; banks high and rocky and not subject to everflow; stream confined between the abutments of bridge. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 6.2 feet at 6 a.m. and 6.15 p. m. May 4 (discharge, 3,400 second-feet); minimum stage recorded, 2.2 feet at 9 a.m. and 3.50 p. m. June 20 (water held back by mills; discharge, from extension of rating curve, 14 second-feet). WINTER FLOW.—Discharge relation not affected by ice, as the rapid fall and the proximity of the power plant immediately above the station tend to keep the river open. REGULATION.—About 800 feet upstream from the station is the dam of the American Woolen Co. (Pioneer Mills) and the Smith Textile Co., and about one-half mile farther upstream is the dam of the American Woolen Co's Waverly Mills; the storage of water at these dams causes diurnal fluctuation at the gage. Accuracy.—Owing to lack of information in regard to the stage at night, when the mills are shut down, table of daily discharge is not published. The tables show the discharge corresponding to gage heights at times of observation. The following discharge measurement was made by G. C. Danforth: September 2, 1915: Gage height, 3.85 feet; discharge, 672 second-feet. Twice-daily gage height, in feet, and discharge, in second-feet, of Sebasticook River at Pittsfield, Maine, for the year ending Sept. 30, 1915. | , | | | Octo | ber. | | | November. | | | | | | | |------------------------|--|--|----------------------------------|--|--|---------------------------------------|--|--------------------------------------|--|--------------------------------------|--|---------------------------------|--| | Day. | | А. М. | | | P. M. | | | A. M. | | | Р. М. | | | | | Time. | Gage
height. | Dis-
charge. | | | 1
2
3
4
54 | 6.00
8.00
7.00
9.30
5.55 | 2.6
2.5
2.5
2.5
2.5
2.5 | 97
71
71
71
71 | 5. 10
5. 00
6. 00
4. 20
4. 05 | 2.6
2.5
2.5
2.5
2.5
2.7 | 97
71
71
71
71
125 | 9.00
6.30
6.20
10.00
6.00 | 2.3
2.4
2.4
3.1
2.4 | 30
50
50
270
50 | 5.00
4.00
4.00
4.00
4.00 | 2.3
2.4
2.4
2.4
2.4
2.4 | 30
50
50
50
50 | | | 6 | 6.00
6.00
8.00
7.00
7.00 | 2.6
2.6
2.7
2.7
2.6 | 97
97
125
125
97 | 5.00
5.00
5.00
5.00
5.00 | 2.7
2.7
2.7
2.7
2.4 | 125
125
125
125
125
50 | 12.30
6.00
12.00
6.00
7.00 | 3.1
3.1
2.3
2.9
2.9 | 270
270
30
193
193 |
5.00
4.00
4.00
4.00
4.30 | 2.7
2.4
2.3
2.9
2.7 | 125
50
30
193
125 | | | 11 | 10.00
6.10
6.00
6.00
6.00 | 2.4
2.4
2.4
2.3
2.3 | 50
50
50
30
30 | 5.00
5.00
4.30
4.20
4.30 | 2.4
2.4
2.4
2.3
2.3 | 50
50
50
30
30 | 6. 10
12. 00
12. 00
7. 00
10. 00 | 2.7
2.7
2.9
2.5
2.4 | 125
125
193
71
50 | 4.00
4.00
4.00
3.00
4.00 | 2.7
2.7
2.7
2.4
2.4 | 125
125
125
50
50 | | | 16
17
18
19 | 6. 10
6. 00
10. 00
6. 00
6. 00 | 2.3
2.3
2.3
2.4
2.4 | 30
30
30
50
50 | 5.00
5.00
5.00
4.00
5.00 | 2.3
2.3
2.4
2.4 | 30
30
30
50
50 | 6.40
6.20
9.00
8.00
9.00 | 3. 1
2. 4
2. 5
3. 0
3. 1 | 270
50
71
230
270 | 3.00
4.00
4.00
3.00
4.00 | 3.1
2.4
3.0
3.1 | 270
270
50
230
270 | | | 21 | 6. 10
6. 05
6. 00
6. 00
9. 00 | 2.3
2.3
2.3
2.4
2.4 | 30
30
30
50
50 | 5.00
4.00
4.10
4.00
4.00 | 2.3
2.3
2.4
2.4
2.4
2.4 | 30
30
50
50
50 | 6. 40
10. 00
6. 30
8. 00
8. 30 | 3.1
3.0
3.1
3.0
3.1 | 270
230
270
230
230
270 | 4.00
4.00
4.00
4.00
3.45 | 3.1
3.0
3.1
3.1
3.1 | 270
230
270
270
270 | | | 26 | 6.00
6.15
6.15
6.00
6.00 | 2.4
2.5
2.5
2.5
2.4
2.4 | 50
71
71
71
50
50 | 4.00
4.00
4.00
4.30
4.30
4.00 | 2.5
2.5
2.4
2.4
2.3 | 71
71
71
50
50 | 10.00
8.00
8.00
10.00
7.00 | 2.5
3.0
2.4
2.4
2.7 | 71
230
50
50
125 | 4.00
4.00
4.00
4.00
3.10 | 2.5
3.1
2.4
2.4
2.7 | 71
270
50
50
125 | | | | | | Dece | nber. | | | January. | | | | | | | |------|---------------------------------------|---------------------------------|-------------------------------|---|---------------------------------|--------------------------------|---|--|--------------------------------------|---|---------------------------------|--------------------------------|--| | Day. | | A. M. | | | Р. М. | | | A. M. | | P. M. | | | | | | Time. | Gage
height. | Dis-
charge. | | | 1 | 8.00
8.00
8.00
8.00
8.00 | 2.6
2.7
2.8
2.7
2.6 | 97
125
158
125
97 | 4.00
4.00
3.30
4.00
4.00 | 2.9
2.7
2.8
2.7
2.4 | 193
125
158
125
50 | | | | 1.00
1.30 | 2. 3
2. 4 | 30
50 | | | 6 | 10.00
9.00
7.30
8.00
7.10 | 2.3
2.6
2.5
2.5
2.4 | 30
97
71
71
50 | 3.00
3.00
4.00
3.30
3.00 | 2.3
2.7
2.6
2.4
2.4 | 30
125
97
50 | | | | 1.00
12.30
1.00
1.00
12.00 | 2.9
2.4
2.3
2.3
2.4 | 193
50
30
30
50 | | | 11 | 7.00
8.00
9.00
7.00
8.00 | 2.4
2.8
2.3
2.4
2.4 | 50
158
30
50
50 | 3.00
3.45
4.00
3.00
3.00 | 2.8
2.8
2.3
2.6
2.5 | 158
158
30
97
71 | | 2.9 | | 12.50
12.30
1.50
1.30 | 2.4
2.4
2.4
2.7 | 50
50
30
125 | | | 16 | 8.00
12.00
9.00
8.00
9.00 | 2.4
2.3
2.3
2.4
2.4 | 50
30
30
50
50 | 1.00
4.00
4.00
3.00 | 2.3
2.4
2.4
2.4
2.4 | 30
50
50
50 | | | | 1.10
12.00
1.40
12.45
1.00 | 2.7
2.3
2.3
2.7
2.3 | 125
30
30
125
30 | | | 21 | | 2.4
2.3
2.4
2.3
2.3 | 50
30
50
30
30 | 3. 20
4. 00
4. 00
3. 00
3. 30 | 2.4
2.3
2.4
2.3
2.3 | 50
30
50
30
30 | 8.00
8.20
8.00
10.30
8.00 | 2.7
2.9
3.1
2.6
3.1 | 125
193
270
97
270 | 12, 30
12, 45
12, 30 | 2.3
3.0

2.9 | 30
230
193 | | | 26 | 10.00 | | | 1.00
1.00
12.30
1.00
1.00 | 2.5
2.5
2.5
2.3
2.3 | 71
71
71
30
30 | 7.45
7.00
8.00
9.00
8.00
12.00 | 3.1
3.1
2.9
2.6
2.8
2.5 | 270
276
193
97
158
71 | 12.40
12.15
1.00
12.15
4.00 | 2.9
2.7
2.7
2.6
2.7 | 193
125
125
97
125 | | Twice-daily gage height, in feet, and discharge, in second-feet, of Sebasitcook River at Pittsfield, Maine, for the year ending Sept. 30, 1915—Continued. | • | Ī | | Februa | ry. | | | <u>.</u> | · | Mai | rch. | | | |--------------------------|---------------------------------------|--------------------------------------|---|--|--|--|--|--|--|--|--|--| | Day. | <u> </u> | A. M. | | | Р. М. | | | A. M. | | | Р. М. | | | 24,0 | Time. | Gage
height. | Dis-
charge. | | 1 | 8.00
9.00
8.00
7.45 | 2.8
2.8
2.8
2.8
2.8 | 158
158
158
158 | 12.30
1.00
1.00
12.30 | 2.6
2.8
2.4
2.4
2.9 | 97
158
50
50 | 8. 45
9. 00
8. 15
10. 00
9. 00 | 4.5
4.5
4.5
4.4
4.2 | 1,250
1,250
1,250
1,140
938 | 1.00
12.15
12.15
1.00
12.20 | 4.5
4.4
4.4
4.4
4.2 | 1,250
1,140
1,140
1,140
938 | | 6
7
8
9 | 9.00
8.10
9.00
9.10 | 3.0
3.0
3.1 | 230
230
270 | 1. 00
1. 40
1. 30
12. 45
12. 30 | 2.9
2.7
3.0
2.9 | 193
193
125
230
193 | 9.00
9.20
6.20 | 4.2
4.2
4.0 | 938
938
745 | 4.00
12.00
5.00
12.30 | 4.2
4.1
4.2
4.0 | 938
838
938
745 | | 10 | 9.15
8.00
8.20
9.00
9.00 | 3.0
3.1
2.9
2.9
2.9 | 230
270
193
193
193 | 1.00
12.45
1.00
1.45
4.00 | 2.9
2.9
2.8
2.8
2.9 | 193
193
158
158
193 | 9.00
6.15
9.00
6.20
9.00 | 3.8
3.8
3.6
3.6 | 600
600
600
485
485 | 12.40
1.00
12.10
1.00
4.00 | 3.8
3.8
3.6
3.6 | 600
600
600
485
485 | | 16 | 8 40 | 3. 1
3. 1
3. 1
3. 1
3. 1 | 270
270
270
270
270
270 | 1.00
1.00
12.40
1.00
12.40
2.10 | 2. 8
3. 0
3. 0
3. 1
2. 9
2. 8 | 158
230
230
270
193
158 | 6.00
6.40
12.10
7.30
9.00
10.10 | 3.5
3.3
3.2
3.4
3.3 | 438
438
352
310
395
352 | 1.00
4.00
12.15
1.00
5.00 | 3. 5
3. 5
3. 3
3. 2
3. 4
3. 2 | 438
438
352
310
395
310 | | 21.
22.
23.
24. | 9. 15
9. 00
8. 00
9. 00 | 3. 1
3. 0
2. 9
3. 2 | 270
230
193
310 | 12.00
12.45
12.15
12.40
12.45 | 3.0
3.0
2.9
2.3
3.9 | 230
230
193
30
668 | 10. 15
9. 00
6. 30
6. 10
6. 00 | 3. 2
3. 4
3. 3
3. 3
3. 4 | 310
395
352
352
352
395 | 4.00
12.40
1.00
12.30
12.10 | 3. 2
3. 4
3. 3
3. 4
3. 4 | 310
395
352
395
395 | | 26.
27.
28.
29. | 8.40
7.40
9.00 | 4.0
4.4
4.5 | 745
1,140
1,250 | 12.45
1.35
1.00 | 4.4
4.4
4.5 | 1,140
1,140
1,250 | 6,40
9,00 | 3.2 | 310
395 | 12.00
5.10
4.00
12.30
12.40
12.10 | 3.3
3.4
3.4
3.4
3.5
3.5 | 352
395
395
395
438
438 | | | | | A | | | | | | Mε | | 3. 5 | 400 | | | | A. M. | Ap | rn. | Р. М. | | | А. М. | 191.2 | | Р. М. | | | Day. | Time. | Gage | Dis-
charge. | Time. | Gage
height. | Dis-
charge. | Time. | Gage
height. | Dis-
charge. | Time. | Gage | Dis-
charge. | | 1 | 6.30
7.00
6.15 | 3.5
3.5
3.6 | 438
438
485 | 12.15
1.00
4.00
4.00 | 3.5
3.6
3.6
3.5 | 438
485
485
438 | 6.00
8.20
6.15
6.00 | 4.5
5.5
5.9
6.2 | 1,250
2,460
2,990
3,400 | 4.00
4.00
6.10
6.15 | 5.3
5.7
6.0
6.2 | 2,200
2,720
3,130
3,400 | | 6 | 6.20
8.00
7.00
6.10
6.30 | 3.5
3.6
3.7
3.7
3.9 | 438
485
540
540
668 | 4.00
1.00
1.15
3.00
12.15 | 3.5
3.7
3.7
3.9 | 438
540
540
540
668 | 6.10
6.15
7.10
6.00
9.00 | 6.0
5.8
5.6
5.6
5.5 | 3,130
2,860
2,590
2,590
2,460 | 6.40
6.00
6.40
6.00 | 5.8
5.7
5.6
5.5 | 2,860
2,720
2,590
2,460 | | 11 | 6.00
6.20
12.00
7.00
6.00 | 4.3
4.5
4.9
4.9
4.8 | 1,040
1,250
1,710
1,710
1,590 | 4.00
12.00
6.00
4.00
4.10
1.00 | 4.3
4.7
4.9
4.9 | 1,040
1,040
1,470
1,710
1,710
1,590 | 6.20
6.00
5.45
6.15
6.10
6.15 | 4.4
4.8
4.7
4.4
4.1
4.0 | 1,140
1,590
1,470
1,140
838
745 | 6.00
6.10
6.00
6.00
6.00
1.00 | 5. 2
4. 8
4. 4
4. 3
4. 1
4. 0 | 2,080
1;590
1,140
1,040
838
745 | | 16
17
18
19 | 6. 25
6. 30
6. 10
a12. 40 | 4. 8
4. 5
4. 4
4. 4 | 1,590
1,250
1,140
1,140 | 1.00
4.00
12.00
1.00
4.00 | 4.8
4.5
4.5
4.4
4.3 | 1,590
1,250
1,250
1,140
1,040 | 6.15
6.00
6.10
6.10 | 3.9
3.7
3.7
3.8 | 668
540
540
600 | 12.00
6.00
6.15
5.40
5.00 | 4.0
3.8
3.7
3.6
3.8 | 745
600
540
485
. 600 | | 21 | 6.15
6.00
12.00 | 4.3
4.1
4.0 | 1,040
838
745 | 1.00
4.00
6.00
12.00
12.00 | 4.1
4.1
4.0
4.0
3.9 |
838
838
745
745
668 | 6.00
6.00
6.00
6.10 | 3.7
3.6
3.4
3.4 | 540
485
395
395 | 6. 20
6. 10
12. 00
6. 20
6. 10 | 3.7
3.7
3.5
3.4
3.3 | 540
540
438
395
352 | | 26 | 7.00
6.20
6.20
6.00
1.00 | 3. 8
3. 9
3. 8
3. 8 | 600
600
668
600
600 | 6.10
6.00
1.10
6.00
6.00 | 3.8
3.9
3.8
3.8
4.0 | 600
668
600
600
745 | 6.00
5.40
6.10
6.15 | 3.3
3.1
3.3
3.1 | 352
270
352
270 | 6.15
6.30
6.00
4.00
12.00
6.10 | 3.1
3.3
2.9
2.9
3.1 | 270
270
352
193
193
270 | Twice-daily gage height, in feet, and discharge, in second-feet, of Sebasticook River at Pittsfield, Maine, for the year ending Sept. 30, 1915—Continued. | | | a, 14.41 | Ju | | | y | 1 | , 1010 | Ju | | | | |--------------|--|--|--|--|---|--|--|--|--|--|--|--| | ~ | | A. M. | | | Р. М. | | | A. M. | |
 | Р. М. | | | Day. | Time. | Gage
height. | Dis-
charge. | Time. | Gage
height. | Dis-
charge. | Ťime. | Gage
height. | Dis-
charge. | Time. | Gage
height. | Dis-
charge. | | 1 | 5.30
5.00
6.30
5.40
7.00 | 3.0
3.0
3.0
3.1
2.9 | 230
230
230
230
270
193 | 6.00
5.10
6.00
6.10
6.40 | 3.0
3.1
3.0
3.0
2.9 | 230
270
230
230
230
193 | 6. 10
7. 15
9. 00
8. 00
6. 00 | 3. 0
2. 9
2. 5
2. 4
2. 4 | 230
193
71
50
50 | 6.00
6.00
6.00
4.10
5.00 | 2.8
3.0
2.5
2.4
2.4 | 158
230
71
50
50 | | 6 | 8.00
6.00
6.10
5.30
8.00 | 2.9
3.1
3.0
2.9
2.9 | 193
270
230
193
193 | 7.10
3.00
6.30
6.00
6.15 | 3.0
2.9
3.0
2.9
3.0
2.9 | 193
230
193
230
193 | 6.40
5.30
7.00
6.00
6.40 | 2.9
2.8
3.0
3.3
3.2 | 193
158
230
352
310 | 6.00
4.00
6.10
5.30
6.00 | 2.9
2.8
3.0
3.3
3.0 | 198
158
230
352
230 | | 11 | 9.00
8.30
12.00
6.10
5.40 | 2.9
3.0
2.8
2.9
3.0 | 193
230
158
193
230 | 5. 40
4. 00
6. 00
6. 15
6. 00 | 3.0
3.0
2.9
3.0
3.0 | 230
230
193
230
230 | 6. 40
6. 55
8. 00
7. 00 | 3.5
3.5
3.6
3.6 | 438
438
485
485
485 | 12.00
6.10
7.00
6.10
6.10 | 3.0
3.5
3.6
3.6
3.4 | 230
438
485
485
395 | | 16 | 5. 45
6. 00
6. 00
5. 40
9. 00 | 3.1
3.0
2.9
3.0
2.2 | 270
230
193
230
14 | 6.00
6.10
6.15
6.00
3.50 | 3.1
3.0
3.0
2.9
2.2 | 270
230
230
193
14 | 8.00
8.00
9.00
12.00
7.00 | 3.5
3.4
3.4
3.5
3.6 | 438
395
395
438
485 | 7.00
3.00
4.00
6.10
6.00 | 3. 4
3. 5
3. 4
3. 5
3. 6 | . 395
438
395
438
485 | | 21 | 7.00
5.30
6.10
6.00
7.30 | 2.9
3.0
3.0
2.8
2.9 | 193
230
230
230
158
193 | 6.30
6.10
6.00
6.10
7.00 | 2.9
3.1
3.0
2.9
2.8 | 193
270
230
193
158 | 7.40
8.00
8.00
6.10
8.00 | 3.6
3.5
3.5
3.4
3.3 | 485
438
438
395
352 | 6.15
6.00
6.10
4.00
4.00 | 3.4
3.4
3.5
3.1
3.4 | 395
395
438
270
395 | | 26 | 6.00
8.00
6.10
5.40
5.55 | 2.8
2.4
2.9
2.9
3.0 | 158
50
193
193
230 | 5. 40
5. 00
6. 00
6. 10
6. 00 | 2.7
2.4
2.9
2.7
2.7 | 125
50
193
125
125 | 8.00
9.00
9.00
7.10
6.30
9.00 | 3.5
3.5
3.5
3.4
3.0
3.0 | 438
438
438
395
230
230 | 6. 20
6. 15
6. 30
7. 00
6. 00
6. 40 | 3.5
3.5
3.6
3.1
3.0
2.7 | 438
438
485
270
230
215 | | | | | Aug | nst. | | <u>'</u> | | , | Septe | mber. | | <u>' </u> | | Day. | | А. М. | | | Р. М. | | | А. М. | | | Р. М. | | | ı | Time. | Gage
height. | Dis-
charge. | | 1 | 8.00
6.40
8.00
7.10
9.00 | 2.9
3.1
3.1
3.2
3.1 | 193
270
270
310
270 | 12.00
6.10
7.00
6.00
6.15
6.40 | 2.6
3.0
3.1
3.2
3.2
3.1
3.2 | 97
230
270
310
310
270 | 6.00
8.00
6.40
7.10
7.00
6.00 | 4.0
3.9
3.7
3.7
3.5
3.7 | 745
668
540
540
438
540 | 6. 20
6. 00
6. 00
4. 00
4. 00
6. 10 | 4.0
3.9
3.7
3.6
3.4
3.7 | 745
668
540
485
395
540 | | 8
9
10 | 6.00
9.00
6.00
6.00 | 3.2
2.8
3.1
3.2 | 310
158
270
310 | 4.00
4.00
6.05
6.10 | 2.8
3.2
3.2 | 310
158
310
310 | 6.00
9.00
8.00
6.40 | 3.6
3.7
3.5
3.3 | 485
540
438
352 | 6.10
6.00
6.20
6.10 | 3.6
3.7
3.5
3.1 | 485
540
438
270 | | 11 | 6.00
6.00
6.00
9.00
9.00 | 3.1
3.1
3.1
3.2
3.5 | 270
270
270
310
438 | 6.30
6.00
7.00
5.00
6.00 | 3.1
3.1
3.2
3.2
3.5 | 270
270
310
310
438 | 6. 20
9. 00
7. 00
6. 00
6. 25 | 3.0
2.6
3.1
3.3
3.1 | 230
97
270
352
270 | 6. 10
4. 00
6. 10
6. 10
5. 40 | 2.8
2.6
3.4
3.1
3.1 | 158
97
395
270
270 | | 16 | 6.00
6.00
6.15
6.00
6.10 | 3.8
3.8
3.8
3.7
3.8 | 600
600
600
540
600 | 7.00
6.00
6.10
7.00
6.00 | 3.8
3.8
3.7
3.7
3.8 | 600
600
540
540
600 | 6. 10
6. 35
8. 00
9. 00
6. 30 | 3.3
3.2
3.1
2.7
3.0 | 352
310
270
125
230 | 6.20
5.40
4.00
4.00
6.00 | 3.3
3.1
2.9
2.7
3.1 | 352
270
193
125
270 | | 21 | 6.00
9.00
6.10
6.00
6.00 | 3.8
3.6
3.8
3.8
4.0 | 600
485
600
600
745 | 5. 40
5. 30
6. 40
6. 15
6. 10 | 3.4
3.6
3.8
3.8
4.0 | 395
485
600
600
745 | 6. 10
6. 30
8. 00
6. 00
6. 10 | 3.1
3.1
3.1
3.0
3.0 | 270
270
270
270
230
230 | 6. 15
6. 10
6. 10
5. 40
4. 00 | 3.1
3.1
3.1
3.0
2.8 | 270
270
270
270
230
158 | | 26 | 7.00
6.40
6.00
9.00
6.00
8.00 | 4.2
4.5
4.5
4.5
4.3
4.1 | 938
1,250
1,250
1,250
1,040
838 | 6. 15
6. 00
5. 30
4. 00
4. 00
6. 00 | 4.4
4.5
4.5
4.4
4.2
4.1 | 1,140
1,250
1,250
1,140
938
838 | 12.00
6.00
6.10
6.30
7.00 | 2.6
2.8
3.1
3.0
3.0 | 97
158
270
230
230 | 4.00
4.15
6.20
6.00
6.10 | 2.6
3.1
3.0
3.0
2.9 | 97
270
230
230
193 | Note.-Discharge determined from a rating curve well defined between 70 and 4,000 second-feet. Monthly discharge of Sebasticook River at Pittsfield, Maine, for the years ending Sept. 30, 1914-15. # [Drainage area, 320 square miles.] | į | D | ischarge in se | econd-feet. | | Run-off | |--|---|---|--|---|---| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | | 1913–14. October | 600
668
668
438
668
6,380
2,590
250
193
71
60 | · 71 395 230 97 125 193 668 193 50 50 | 256
504
409
272
321
470
2,720
1,070
133
109
52
44 | 0. 800
1. 58
1. 28
850
1. 00
1. 47
8. 50
3. 33
. 416
. 340
. 162
. 137 | 0. 92
1. 76
1. 48
. 98
1. 04
1. 70
9. 48
3. 84
. 39
. 19 | | The year | 6,380 | 30 | 528 | 1.65 | 22. 39 | | October 1914–15. November December January February March April June July August September September September 1914–15. | 60
1111
71
230
1,140
1,200
1,710
3,400
270
485
1,250
745 | 22
- 22
22
14
71
310
438
193
14
50
97 | 35
66
38
93
303
589
878
1, 250
198
324
532
329 | 0. 109
. 206
. 119
. 291
. 947
1. 84
2. 74
3. 91
. 619
1. 01
1. 66
1. 03 | 0. 13
. 23
. 14
. 34
1. 02
2. 12
3. 06
4. 51
. 69
1. 16
1. 91 | | The year | 3,400 | 14 | 388 | 1. 21 | 16.46 | Note.—Because of the effect of power regulation, results of mean daily discharge for any individual day may be considerably in error; and therefore no quantities of daily discharge are published for this station. Such errors, however, compensate in large measure, so that quantities of monthly mean discharge given in the above table are believed to be of a fair degree of accuracy. #### COBBOSSEECONTEE STREAM AT GARDINER, MAINE. LOCATION.—At dam of Gardiner Water Power Co. in Gardiner, Kennebec County. Drainage area.—220 square miles. RECORDS AVAILABLE.—June 16, 1890, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine.
GAGES.—One in pond above dam and one in tailrace of power house. DETERMINATION OF FLOW.—Discharge determined by considering (1) flow over dam; usually nothing except for a short time in the spring; (2) flow through two gates; and (3) flow through a 39-inch Victor wheel installed in 1907. The computations of daily discharge are made by the engineers of the S. D. Warren Co., from tables of discharge based on careful experiments. WINTER FLOW.—Discharge relation not affected by ice. REGULATION.—The many lakes in the basin are controlled by storage dams and the streams afford a remarkable example of the regularity of flow that can be obtained with proper storage. Except for a short time in the spring no water is wasted. Results not corrected for storage. COOPERATION.—Station maintained by S. D. Warren Co., which furnished the records of daily discharge for publication. Daily discharge, in second-feet, of Cobbosseecontee Stream at Gardiner, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |-------------|-------|------|------|------|-------|------------|-----------|------|-------|-------|------|-------| | 1 | 180 | a0 | 150 | 150 | 210 | 650 | 250 | 250 | 140 | 180 | a 0 | 250 | | 2 | 180 | 180 | 150 | 150 | 210 | 360 | 250 | a 0 | 200 | 180 | 250 | 250 | | 3 | 180 | 180 | 150 | a O | 210 | 280 | 250 | 250 | 200 | 180 | 250 | 250 | | 4 | a O | 180 | 150 | 150 | 210 | 280 | a0 | 250 | 200 | a 100 | 250 | 250 | | 5 | 180 | 180 | 150 | 150 | 210 | 280 | 250 | 250 | 200 | 0 | 250 | a 0 | | 6 | | 180 | a0 | 150 | 210 | 280 | 250 | 250 | a0 | 180 | 250 | 250 | | 7 | 180 | 180 | 150 | 150 | a O | a () | 250 | 250 | 200 | 180 | 250 | 250 | | 8 | 180 | a0 | 150 | 150 | 210 | 280 | 250 | 250 | 200 | 370 | a 0 | 250 | | 9 | 180 | 180 | 150 | 150 | 210 | 280 | 250 | a0 | 200 | 640 | 250 | 250 | | 10 | 180 | 180 | 150 | a () | 210 | 280 | 250 | 250 | 200 | 700 | 250 | 250 | | 11 | a 0 | 180 | 150 | 150 | 210 | 280 | ao | 250 | 200 | a 550 | 250 | 250 | | 2 | 180 | 180 | 150 | 150 | 210 | 280 | 250 | 250 | 200 | 360 | 250 | 80 | | i3 | 180 | 180 | ãÕ | 150 | 210 | 280 | 250 | 250 | a0 | 250 | 250 | 250 | | l4 | 180 | 180 | 150 | 150 | a0 | a 0 | 250 | 250 | 200 | 250 | 250 | 250 | | l5 | 180 | a 0 | 150 | 150 | 210 | 250 | 250 | 250 | 200 | 250 | a 0 | 250 | | 16 | 180 | 150 | 150 | 150 | 250 | 250 | 250 | α0 | 200 | 250 | 250 | 250 | | 17 | 180 | 150 | 150 | a O | 250 | 250 | 250 | 200 | 200 | .250 | 250 | 250 | | 18 | a 0 | 150 | 150 | 150 | 250 | 250 | a0 | 200 | 200 | a 30 | 250 | 250 | | 19 <i>.</i> | 180 | 150 | 150 | 150 | 250 | 250 | 250 | 200 | 200 | 250 | 250 | a 0 | | 20 | 180 | 150 | a 0 | 220 | 250 | 250 | 250 | 200 | a0 | 250 | 250 | 250 | | 21 | 180 | 150 | 150 | 220 | a0 | a0 | 250 | 200 | 200 | 250 | 250 | 250 | | 22 | 180 | a 0 | 150 | 220 | 250 | 250 | 250 | 200 | 200 | 250 | , a0 | 250 | | 23 | 180 | 150 | 150 | 220 | 250 | 250 | 250 | a O | 200 | 250 | 250 | 250 | | 24 | 180 | 150 | 150 | a 0 | 250 | 250 | 250 | 200 | 200 | 250 | 250 | 250 | | 25 | a0 | 150 | 150 | 220 | 250 | 250 | a0 | 200 | 200 | ۵0 | 250 | 250 | | 26 | . 180 | 0 | 150 | 220 | 900 | 250 | 250 | 200 | 200 | 250 | 250 | a 0 | | 27 | 180 | 150 | a 0 | 220 | 950 | 250 | 250 | 200 | a0 | 250 | 250 | 250 | | 28 | 180 | 150 | 150 | 220 | a 850 | 6 0 | 250 | 200 | 180 | 250 | 250 | 250 | | 29 | 180 | 0 | 150 | 220 | | 250 | 250 | 200 | 180 | 250 | a0 | 250 | | 30 | 180 | 150 | 150 | 220 | | 250 | 250 | a0 | 180 | 250 | 250 | 250 | | 31 | 180 | | 150 | α0 | | 250 | - | 200 | 1 | 250 | 250 | | a Sunday. Monthly discharge of Cobbosseecontee Stream at Gardiner, Maine, for the year ending Sept. 30, 1915. ## [Drainage area, 220 square miles.] | | D | | Rup-off
(depth in | | | |---|---|----------|--|--|---| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | inches on
drainage
area). | | October November December January February March April May June July August September | 180
150
220
950
650
250
200
700
250 | | 157
132
131
148
274
244
217
183
169
255
210
217 | 0. 714
.600
.595
.673
1. 25
.986
.832
.768
1. 16
.955
.986 | 0. 82
.67
.69
.78
1. 30
1. 28
1. 10
.96
.86
1. 34
1. 10 | | The year | 950 | 0 | 194 | . 882 | 12.00 | Note.—The monthly discharge in second-feet per square mile and the run-off in depth in inches, shown by the table, do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. # SURFACE WATER SUPPLY, 1915, PART I. #### ANDROSCOGGIN RIVER BASIN. ANDROSCOGGIN RIVER AT ERROL DAM, N. H. LOCATION.—At Errol dam, 1 mile above Errol, Coos County. Drainage area.—1,095 square miles. RECORDS AVAILABLE.—January 1, 1905, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGE.—Movable rod gage; readings taken daily from sill of deep gate No. 6; elevation of zero of gage or sill of gate, 1,231.3 feet above mean sea level. DISCHARGE.—Computed from discharge through 14 gates in the dam by means of coefficients determined from a few discharge measurements.^a WINTER FLOW.—Discharge relation little affected by ice. REGULATION.—Errol dam controls the storage of Umbagog Lake, the lower of the Rangeley series of lakes, comprising the principal storage of Androscoggin River and amounting to nearly 20 billion cubic feet, and also a fecently developed storage site on Magailoway River created by the Aziscohos Dam, which amounts to about 9.6 billion cubic feet, thus making the total storage about 29.6 billion cubic feet. Errol Dam is about 5 miles below outlet of Umbagog Lake and about 3.5 miles below mouth of Magalloway River, thus making this stream one of the feeders of Umbagog Lake. Results not corrected for storage. COOPERATION.—Records obtained and computations of daily discharge made under direction of Walter H. Sawyer, agent for Union Water Power Co., Lewiston, Me. Daily discharge, in second-feet, of Androscoggin River at Errol dam, N. H., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |----------------------------------|---|---|--|--|---|--|---|--|---|--|--|---| | 1
2
3
4
5 | 1,640
1,670
1,690
1,690
1,810 | 1,550
1,500
1,370
1,480
1,580 | 1,640
1,420
1,260
1,290
1,300 | 1,730
1,660
1,700
1,720
1,690 | 1,540
1,570
1,620
1,600
1,580 | 1,520
1,420
1,130
1,110
1,300 | 977
962
944
944
944 | 1,360
1,380
1,380
1,380
1,370 | 1,290
1,360
1,010
1,000
983 | 691
1,280
1,160
1,130
1,130 | 995
962
783
702
718 | 1,190
1,280
1,370
1,470
1,420 | | 6 | 1,840
1,840
1,780
1,700
1,700 | 1,600
1,600
1,610
1,610
1,660 | 1,360
1,410
1,440
1,490
1,490 | 1,640
1,500
1,520
1,610
1,620 | 1,560
1,550
1,540
1,530
1,510 | 1,250
1,220
1,220
1,230
1,320 | 944
911
928
944
977 | 967
551
1,230
1,320
1,140 | 983
1,350
1,330
1,370
1,400 | 1,080
1,190
806
123
130 | 1,010
1,110
1,100
521
240 | 1,350
1,450
1,570
1,550
1,520 | | 11
12
13
14
15 | 1.800 | 1,750
1,760
1,770
1,860
1,840 | 1,470
1,450
1,560
1,620
1,620 | 1,560
1,590
1,540
1,500
1,500 | 1,500
1,480
1,510
1,500
1,520 | 1,330
1,380
1,330
1,380
1,360 | 640
245
5 80
5 80
730 | 481
563
1,160
1,240
839 | 1,250
1,280
1,310
1,390
1,350 | 337
646
1,180
721
570 | 246
252
258
467
840 | 1,480
1,600
1,620
1,510
1,560 | | 16
17
18
19 | 1,660
1,430
1,340
1,610
1,500 | 1,480
1,340
1,750
1,880
1,760 | 1,600
1,640
1,650
1,620
1,590 | 1,500
1,530
1,500
1,390
1,460 | 1,400
1,390
1,420
1,500
1,480 | 1,330
1,270
1,240
1,220
1,160 | 898
935
998
1,030
934 | 603
942
963
1,140
1,120 | 1,380
1,390
1,250
1,240
1,280 | 1,100
479
6 80
862
796 | 1,050
1,010
978
1,020
1,140 | 1,640
1,630
1,650
1,620
1,670 | | 21 | 1,650 | 1,720
1,700
1,690
1,680
1,690 | 1,560
1,520
1,500
1,520
1,560 | 1,480
1,490
1,490
1,490
1,470 | 1,460
1,410
1,360
1,280
918 | 1,150
1,130
1,130
1,130
1,130 | 305
1,080
1,170
1,170
1,180 | 1,100
1,180
1,060
1,120
1,280 | 1,410
1,490
1,520
1,530
1,530 | 1,190
1,090
847
958
944 | 1,220
1,240
843
850
968 | 1,220
951
1,640
1,560
1,520 | | 26
27
28
29
30
31 | 1,710
1,740
1,700
1,640 |
1,580
1,470
1,470
1,620
1,590 | 1,540
1,560
1,590
1,560
1,490
1,480 | 1,380
1,440
1,510
1,540
1,550
1,540 | 791
840
1,250 | 1,110
1,090
1,080
1,080
1,060
1,020 | 1,230
1,300
1,340
1,340
1,340 | 1,270
1,240
1,210
1,200
1,160
1,130 | 1,510
1,410
1,410
996
1,470 | 1,050
527
1,200
996
334
411 | 872
869
860
850
992
1,000 | 1,100
1,140
1,270
1,490
1,540 | a See U. S. Geol. Survey Water-Supply Paper 321, p. 61. b Estimated; flow due to leakage only. Monthly discharge of Androscoggin River at Errol dam, N. H., for the year ending Sept. 30, 1915. ## [Drainage area, 1,095 square miles.] | | D | | Run-off | | | |---|---|--|--|--|---| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | | October November December January February March April May June July August September | 1,880
1,650
1,730
1,620
1,520
1,340
1,380
1,280
1,280 | 1,340
1,340
1,260
1,380
840
1,020
481
983
80
240
951 | 1,670
1,630
1,510
1,540
1,410
1,220
917
1,100
1,320
808
840
1,450 | 1. 52
1. 49
1. 38
1. 41
1. 29
1. 11
. 838
1. 00
1. 20
. 738
. 767
1. 32 | 1.75
1.66
1.59
1.63
1.34
1.28
.94
1.15
1.34
.85
.88
1.47 | | The year | 1,880 | a 80 | 1,280 | 1. 17 | 15.88 | a Estimated; flow due to leakage only. Note.—The monthly discharge in second-feet per square mile and the run-off in depth in inches, shown by the table, do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. ### ANDROSCOGGIN RIVER AT BERLIN, N. H. LOCATION.—At the upper or sawmill dam of the Berlin Mills Co., at Berlin, Coos County. Drainage area.—1,350 square miles. RECORDS AVAILABLE.—October 1, 1913, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. Gages.—Fixed gages are maintained in the river above the forebay racks and in the tailrace immediately below the outlet of the wheels; these gages are referred to the same datum, and the differences in the readings give the head acting on the wheels; a gage is also attached to each wheel gate, from which the wheel-gate opening can be ascertained. DETERMINATION OF DISCHARGE.—Discharge computed from curves prepared from Holyoke tests of the wheel runners, using the head and gate openings as ascertained from the gages. Quantity of water wasted over the dam is computed by the Francis formula for discharge over weirs. WINTER FLOW.—Discharge relation not affected by ice. REGULATION.—Under an agreement between the power users on Androscoggin River, the flow at Berlin, N. H., is maintained at a minimum of 1,550 second-feet and at such a higher point above 1,550 second-feet as is consistent with the constant maintenance of that quantity. The actual fine regulation of the river is carried on at Pontocook dam, N. H., above which is a pond containing about a day's supply. The primary regulation of the river is made at Errol, N. H., about 30 miles above Berlin. COOPERATION.—The readings are kept under the direction of Mr. John H. Wilson of the Berlin Mills Co. and discharge record is furnished for publication by Mr. Walter H. Sawyer, agent for Union Water Power Co. | 0et. Nov.
600 1,720
650 1,720
140 1,700
1,720
1,680 | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |--|--|---
--|---|--
---|---|--|---|---| | 600 1,720
650 1,720
140 1,700
770 1,720 | 1,720 | | | | | | | | | | | | 1,690
1,710
1,820
1,850 | 1,820
1,800
1,850
2,020
1,970 | 1,820
1,820
1,800
1,770
1,780 | 1,640
2,300
2,600
2,150
2,180 | 1,760
1,960
1,850
1,650
1,680 | 4,180
3,850
3,500
4,100
5,400 | 1,900
1,780
1,800
1,840
1,870 | 1,920
2,090
1,990
1,880
1,900 | 1,750
1,780
1,770
1,770
1,750 | 1,720
1,750
1,760
1,750
1,750 | | 730 1,690
710 1,670
650 21,700
620 1,730
620 4,770 | 1,820
1,880
2,100
2,100
2,040 | 1,820
1,840
1,850
1,810
1,820 | 1,770
1,740
1,740
1,800
1,740 | 2,350
2,300
2,190
2,090
1,970 | 1,660
1,500
1,520
2,180
2,360 | 6,000
6,500
6,800
7,350
14,300 | 1,830
1,830
1,780
1,750
1,730 | 1,780
1,820
1,800
1,790
1,700 | 1,700
1,800
1,700
1,700
1,680 | 1,750
1,750
1,750
1,750
1,750 | | ,630 1,970
,660 1,920
,650 1,860
,700 1,760
,690 1,630 | 2,110
2,170
2,350
2,150
2,060 | 1,770
1,700
1,700
1,710
1,770 | 1,750
1,740
1,770
1,770
1,770 | 1,950
2,000
1,980
1,940
1,880 | 2,370
1,860
2,300
2,300
2,000 | 14,150
12,700
10,300
8,300
5,600 | 1,760
1,830
1,840
1,840
1,750 | 1,800
2,120
2,050
1,740
a1,700 | 1,680
1,700
1,650
1,700
1,850 | 1,750
1,750
1,750
1,750
1,710 | | | 1,970
1,950
1,940
1,950
1,900 | 1,850
1,900
1,920
1,860
1,880 | 1,790
1,610
1,640
1,640
1,600 | 1,800
1,780
1,730
1,680
1,670 | 1,970
1,800
1,920
2,700
9,000 | 4,170
3,170
2,900
2,800
2,600 | 1,720
1,720
1,760
1,790
1,910 | 1,670
1,700
1,710
1,620
1,720 | 1,850
1,720
1,750
1,670
1,800 | 1,720
1,720
1,740
1,750
1,750 | | | 1,950
1,910
1,860
1,880
1,960 | 1,900
1,810
1,690
1,780
1,850 | 1,580
1,650
1,750
1,670
1,550 | 1,680
1,680
1,680
1,700
1,750 | 10,500
7,600
4,550
3,900
4,200 | 2,600
2,500
2,500
2,500
2,500
2,300 | 1,990
1,940
1,820
1,800
1,760 | 1,710
1,710
1,750
1,750
1,750 | -1,750
1,750
1,730
1,750
1,740 | 1,740
1,750
1,830
1,790
1,750 | | 800 1,750
050 1,750
870 1,650
780 1,750
1,750 1,680
850 | 1,890
1,780
1,750
1,720
1,780
1,850 | 1,880
1,890
1,880
1,870
1,860
1,810 | 1,550
1,560
1,570 | 1,820
2,030
2,110
2,040
1,890
1,780 | 3,800
3,400
3,200
4,200
4,900 | 2,100
1,700
1,600
1,460
1,800
1,800 | 1,700
1,820
1,860
a1,840
1,820 | 1,750
1,750
1,760
1,760
1,740
1,760 | 1,740
1,750
1,760
1,750
1,750
1,750
1,700 | 1,780
1,880
1,740
1,600
1,760 | | 750 1,690
750 1,660
750 1,560
750 1,560
750 1,580 | 1,750
1,790
1,790
1,770
1,770 | 1,550
1,550
1,550
1,560
1,560 | 1,550
1,520
1,500
1,530
1,540 | 1,700
2,000
1,750
1,600
1,620 | 1,100
1,090
1,070
1,050
1,060 | 3,850
3,000
2,720
2,800
2,700 | 1,530
1,530
1,540
1,610
1,520 | 1,570
1,560
1,630
1,600
1,580 | 1,550
1,570
1,570
1,550
1,530 | 1,560
1,570
1,550
1,520
1,400 | | 750 1,600
750 1,570
750 1,680
740 1,730
750 1,650 | 1,750
1,730
1,700
1,710
1,720 | 1,560
1,650
1,550
1,560
1,560 | 1,540
1,550
1,550
1,540
1,530 | 1,590
1,550
1,510
1,510
1,510 | 1,090 .
1,070
1,050
1,200
1,400 | 2,460
2,100
1,900
2,150
2,250 | 1,550
1,530
1,540
1,530
1,530 | 1,550
1,530
1,610
4,300
3,800 | 1,540
1,550
1,570
1,500
2,050 | 1,620
1,680
1,580
1,610
1,840 | | 730 1,700
740 1,650
730 1,680 |
1,700
1,660
1,590
1,550
1,740 | 1,620
1,600
1,550
1,560 | 1,530
1,530
1,500
1,520 | 1,450
1,450
1,450
1,450 | | 2,030
1,650
1,630
1,670
1,760 | 1,540
1,580
1,550
1,550
1,550 | 1,660
1,660
1,620 | 2,110
1,950
1,600
1,570
1,540 | 1,710
1,740
1,740
1,740
1,740 | | 740 1,800
740 1,800
620 1,780
740 1,750
750 1,730 | 1,530
1,550
1,570
1,570
1,560 | 1,550
1,550
1,550
1,550
1,600 | | 1,010 | | 1,660
1,650
1,640
1,640
1,630 | 1,540
1,550
1,700
1,550
1,550 | 1,010 | | 1,740
1,740
1,730
1,740
1,690 | | 750 1,750
750 1,750
740 1,740
740 1,730
740 1,740 | 1,560
1,590
1,580
1,560
1,570 | 1,660
1,660
1,660
1,630
1,600 | 1,530
1,530
1,470
1,430
2,600 | | | 1,600
1,590
1,580
1,560
1,560 | 1,550
1,460
1,540
1,540 | 1,520 | 1,550
1,580
1,850
1,750
1,720 | 1,700
1,730
1,790
1,800
1,740 | | 740 1,740
620 1,740
600 1,760
660 1,730
700 1,720
690 | 1,570
1,570
1,560
1,550
1,550
1,540 | 1,580
1,520
1,560
1,560
1,540
1,580 | 2,300
1,750
1,560 | 1,290
1,280
1,270
1,220
1,140
1,110 | 4,000
3,990
3,430
3,000
3,000 | 1,600
1,630
1,640
1,620
1,620
1,540 | 1,550
1,550
1,560
1,480
1,520 | 1,540
1,550
1,550
1,560
1,610
1,570 | 1,720
1,560
1,560
1,590
1,660
1,560 | 1,740
1,710
1,700
1,720
1,750 | | 66 66 67 7777 77777 77777 77777 77777 | 330 1,970 1,920 1, | 330 1,970 2,110 360 1,920 2,170 360 1,930 2,170 360 1,800 2,350 700 1,760 2,150 360 1,630 2,060 750 1,780 1,950 740 1,780 1,950 730 1,760 1,950 740 1,760 1,900 1,600 1,800 1,800 1,700 1,800 1,780 1,700 1,800 1,780 1,700 1,800 1,780 1,750 1,780 1,780 1,650 1,750 1,780 1,650 1,750 1,780 1,650 1,750 1,780 1,750 1,800 1,750 1,650 1,760 1,750 1,550 1,760 1,750 1,550 1,760 1,750 1,550 1,760 1,770 1,550 | 330 1,970 2,110 1,770 360 1,920 2,170 1,770 360 1,920 2,170 1,700 550 1,860 2,360 1,700 700 1,760 2,150 1,710 750 1,780 2,160 1,770 750 1,780 1,950 1,900 750 1,750 1,940 1,920 730 1,750 1,940 1,920 730 1,700 1,900 1,880 1990 1,700 1,900 1,880 1,600 1,880 1,900 1,600 1,880 1,800 1,750 1,780 1,800 1,750 1,780 1,800 1,750 1,780 1,800 1,750 1,780 1,800 1,750 1,780 1,800 1,750 1,780 1,800 1,750 1,780 1,800 1,750 1,780 <td>330 1,970 2,110 1,770 1,750 360 1,920 2,170 1,700 1,750 360 1,920 2,170 1,700 1,770 350 1,860 2,360 1,700 1,770 1,700 1,760 2,180 1,710 1,770 360 1,630 2,060 1,770 1,770 770 1,780 1,970 1,770 1,770 770 1,750 1,950 1,900 1,610 730 1,750 1,950 1,900 1,640 740 1,760 1,950 1,800 1,640 740 1,760 1,950 1,800 1,600 740 1,600 1,880 1,800 1,600 750 1,600 1,880 1,750 1,500 710 1,600 1,880 1,750 1,500 750 1,630 1,750 1,880 1,550 750 1,630 <</td> <td>330 1,970 2,110 1,770 1,750 1,950 360 1,920 2,170 1,770 1,760 2,000 360 1,920 2,170 1,700 1,740 1,980 360 1,760 2,150 1,710 1,770 1,980 3700 1,760 2,150 1,710 1,770 1,940 1,780 1,950 1,850 1,770 1,800 1,780 1,950 1,900 1,610 1,780 1,780 1,940 1,920 1,640 1,780 1,780 1,900 1,880 1,600 1,780 1,790 1,900 1,880 1,600 1,670 120 1,760 1,950 1,900 1,580 1,680 1,640 1,640 1,680 1,880 1,670 1,780 1,700 1,880 1,880 1,670 1,780 1,100 1,880 1,780 1,680 1,750 <</td> <td>330 1,970 2,110 1,770 1,750 1,950 2,370 360 1,920 2,170 1,700 1,740 2,000 1,860 350 1,860 2,350 1,700 1,770 1,980 2,300 700 1,760 2,150 1,710 1,770 1,980 2,300 360 1,630 2,060 1,770 1,770 1,980 2,300 770 1,780 1,900 1,800 1,800 1,900 1,800 1,800 1,900 740 1,780 1,950 1,900 1,640 1,730 1,900 740 1,760 1,900 1,880 1,600 1,630 2,700 890 1,790 1,900 1,880 1,600 1,630 1,900 1,600 1,900 1,880 1,600 1,630 1,900 1,580 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600<!--</td--><td>330 1,970 2,110 1,770 1,750 1,950 2,370 14,150 360 1,920 2,170 1,700 1,760 2,000 1,860 12,700 360 1,920 2,150 1,700 1,770 1,980 2,300 10,300 3700 1,760 2,150 1,710 1,770 1,980 2,300 10,300 380 1,630 2,060 1,770 1,770 1,980 2,000 5,600 750 1,780 1,970 1,800 1,770 1,800 1,970 4,170 740 1,780 1,960 1,610 1,780 1,800 3,170 730 1,750 1,940 1,920 1,640 1,630 2,700 2,800 1,700 1,900 1,880 1,600 1,670 3,000 2,600 1,700 1,800 1,850 1,680 1,600 7,600 2,500 1,700 1,800 1,850 1,55</td><td>330 1,970 2,110 1,770 1,750 1,950 2,370 14,150 1,760 360 1,920 2,170 1,700 1,770 1,950 2,300 1,830 1,830 1,830 1,700 1,770 1,770 1,980 2,300 1,300 1,830 360 1,630 2,660 1,770 1,770 1,980 2,300 8,300 1,340 3700 1,780 1,970 1,770 1,770 1,880 2,000 5,600 1,750 3700 1,780 1,970 1,850 1,770 1,880 2,000 5,600 1,750 4740 1,760 1,990 1,610 1,780 1,900 1,760 1,900 1,760 1,900 1,760 1,900 1,760 1,900 1,760 1,900 1,800 1,600 1,600 2,800 1,760 1,900 1,580 1,600 1,670 9,000 2,600 1,760 1,900 1,600 1,550 1,80</td><td> 1,970</td><td> 1,970</td></td> | 330 1,970 2,110 1,770 1,750 360 1,920 2,170 1,700 1,750 360 1,920 2,170 1,700 1,770 350 1,860 2,360 1,700 1,770 1,700 1,760 2,180 1,710 1,770 360 1,630 2,060 1,770 1,770 770 1,780 1,970 1,770 1,770 770 1,750 1,950 1,900 1,610 730 1,750 1,950 1,900 1,640 740 1,760 1,950 1,800 1,640 740 1,760 1,950 1,800 1,600 740 1,600 1,880 1,800 1,600 750 1,600 1,880 1,750 1,500 710 1,600 1,880 1,750 1,500 750 1,630 1,750 1,880 1,550 750 1,630 < | 330 1,970 2,110 1,770 1,750 1,950 360 1,920 2,170 1,770 1,760 2,000 360 1,920 2,170 1,700 1,740 1,980 360 1,760 2,150 1,710 1,770 1,980 3700 1,760 2,150 1,710 1,770 1,940 1,780 1,950 1,850 1,770 1,800 1,780 1,950 1,900 1,610 1,780 1,780 1,940 1,920 1,640 1,780 1,780 1,900 1,880 1,600 1,780 1,790 1,900 1,880 1,600 1,670 120 1,760 1,950 1,900 1,580 1,680 1,640 1,640 1,680 1,880 1,670 1,780 1,700 1,880 1,880 1,670 1,780 1,100 1,880 1,780 1,680 1,750 < | 330 1,970 2,110 1,770 1,750 1,950 2,370 360 1,920 2,170 1,700 1,740 2,000 1,860 350 1,860 2,350 1,700 1,770 1,980 2,300 700 1,760 2,150 1,710 1,770 1,980 2,300 360 1,630 2,060 1,770 1,770 1,980 2,300 770 1,780 1,900 1,800 1,800 1,900 1,800 1,800 1,900 740 1,780 1,950 1,900 1,640 1,730 1,900 740 1,760 1,900 1,880 1,600 1,630 2,700 890 1,790 1,900 1,880 1,600 1,630 1,900 1,600 1,900 1,880 1,600 1,630 1,900 1,580 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 1,600 </td <td>330 1,970 2,110 1,770 1,750 1,950 2,370 14,150 360 1,920 2,170 1,700 1,760 2,000 1,860 12,700 360 1,920 2,150 1,700 1,770 1,980 2,300 10,300 3700 1,760 2,150 1,710 1,770 1,980 2,300 10,300 380 1,630 2,060 1,770 1,770 1,980 2,000 5,600 750 1,780 1,970 1,800 1,770 1,800 1,970 4,170 740 1,780 1,960 1,610 1,780 1,800 3,170 730 1,750 1,940 1,920 1,640 1,630 2,700 2,800 1,700 1,900 1,880 1,600 1,670 3,000 2,600 1,700 1,800 1,850 1,680 1,600 7,600 2,500 1,700 1,800 1,850 1,55</td> <td>330 1,970 2,110 1,770 1,750 1,950 2,370 14,150 1,760 360 1,920 2,170 1,700 1,770 1,950 2,300 1,830 1,830 1,830 1,700 1,770 1,770 1,980 2,300 1,300 1,830 360 1,630 2,660 1,770 1,770 1,980 2,300 8,300 1,340 3700 1,780 1,970 1,770 1,770 1,880 2,000 5,600 1,750 3700 1,780 1,970 1,850 1,770 1,880 2,000 5,600 1,750 4740 1,760 1,990 1,610 1,780 1,900 1,760 1,900 1,760 1,900 1,760 1,900 1,760 1,900 1,760 1,900 1,800 1,600 1,600 2,800 1,760 1,900 1,580 1,600 1,670 9,000 2,600 1,760 1,900 1,600 1,550 1,80</td> <td> 1,970</td> <td> 1,970</td> | 330 1,970 2,110 1,770 1,750 1,950 2,370 14,150 360 1,920 2,170 1,700 1,760 2,000 1,860 12,700 360 1,920 2,150 1,700 1,770 1,980 2,300 10,300 3700 1,760 2,150 1,710 1,770 1,980 2,300 10,300 380 1,630 2,060 1,770 1,770 1,980 2,000 5,600 750 1,780 1,970 1,800 1,770 1,800 1,970 4,170 740 1,780 1,960 1,610 1,780 1,800 3,170 730 1,750 1,940 1,920 1,640 1,630 2,700 2,800 1,700 1,900 1,880 1,600 1,670 3,000 2,600 1,700 1,800 1,850 1,680 1,600 7,600 2,500 1,700 1,800 1,850 1,55 | 330 1,970 2,110 1,770 1,750 1,950 2,370 14,150 1,760 360 1,920 2,170 1,700 1,770 1,950 2,300 1,830 1,830 1,830 1,700 1,770 1,770 1,980 2,300 1,300 1,830 360 1,630 2,660 1,770 1,770 1,980 2,300 8,300
1,340 3700 1,780 1,970 1,770 1,770 1,880 2,000 5,600 1,750 3700 1,780 1,970 1,850 1,770 1,880 2,000 5,600 1,750 4740 1,760 1,990 1,610 1,780 1,900 1,760 1,900 1,760 1,900 1,760 1,900 1,760 1,900 1,760 1,900 1,800 1,600 1,600 2,800 1,760 1,900 1,580 1,600 1,670 9,000 2,600 1,760 1,900 1,600 1,550 1,80 | 1,970 | 1,970 | a Interpolated. Monthly discharge of Androscoggin River at Berlin, N. H., for the years ending Sept. 30, 1914-15. # [Drainage area, 1,350 square miles.] | | D | ischarge in s | econd-feet. | | Run-off | |--|---|---|---|---|---| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in inches on drainage area). | | October . 1913-14. October . November . December . January . February . March | 2,020
1,820
2,600
10,500
14,300
2,120
1,850
1,890
14,300
1,750
1,600
2,600
2,000
4,000
3,850
1,610 |
1,600
1,690
1,690
1,550
1,640
1,550
1,620
1,620
1,620
1,630
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500
1,500 | 1,770
1,840
1,920
3,220
4,890
1,810
1,750
2,190
1,730
1,730
1,700
1,640
1,580
1,640
1,950
1,950
1,740 | 1. 31
1. 36
1. 42
1. 36
1. 26
1. 44
2. 39
2. 62
1. 34
1. 33
7. 29
1. 30
1. 62
1. 28
1. 28
1. 21
1. 17
1. 18
1. 16
1. 18
1. 19
1. 10
1. 10 | 1. 51
1. 52
1. 64
1. 67
1. 81
1. 66
2. 67
4. 17
1. 50
1. 43
1. 44
1. 44
1. 43
1. 42
1. 22
1. 22
1. 22
1. 22
1. 22
1. 27
1. 57 | | August.
September.
The year | 1,840 | 1,530
1,400
1,000 | 1,640
1,690
1,710 | 1.21
1.25
1.27 | 1. 40
1. 40
17. 22 | Note.—The monthly discharge in second-feet per square mile and the run-off in depth in inches is shown by the table, do not represent the natural flow from the basin, because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. #### ANDROSCOGGIN RIVER AT RUMFORD FALLS, MAINE. LOCATION.—At dam of Rumford Falls Power Co., at Rumford, Oxford County. DRAINAGE AREA.—2,090 square miles. RECORDS AVAILABLE.—May 18, 1892, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGES.—One in pond above dam; another in tailrace of power house. DISCHARGE.—Computed from discharge over the dam by use of the Francis weir formula with modified coefficient, and the quantities passing through the various wheels of the power house, which have been carefully rated. WINTER FLOW.—Discharge relation little affected by ice. REGULATION.—Storage in Rangeley system of lakes at headwaters of Androscoggin River, aggregating about 29.6 billion cubic feet, is largely under complete control. The stored water is regulated in the interests of the water-power users below. Results not corrected for storage. COOPERATION.—Records obtained and computations made by Mr. Charles A. Mixer, engineer, Rumford Falls Power Co. Daily discharge, in second-feet, of Androscoggin River at Rumford Falls, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |-------|---|---|--|--|---|--|--|--|---|--|--|---| | 12345 | 1,820
1,790
1,610 | 1,690
1,760
1,760
1,610
1,580 | 2,190
2,560
2,930
3,060
2,490 | 1,560
1,630
1,460
1,570
1,600 | 1,760
1,820
1,680
1,690
1,760 | 3,400
2,980
2,880
2,770
2,700 | 1,850
1,970
1,870
1,570
1,570 | 10,300
6,810
5,800
5,240
4,420 | 2,160
1,790
1,850
1,850
1,800 | 1,890
3,900
3,840
3,020
2,130 | 1,810
2,800
3,020
2,570
2,510 | 2,090
2,000
1,960
1,960
1,250 | | 6 | 1,820
1,760
1,810
1,770
1,820 | 1,690
1,700
1,540
1,710
1,750 | 1,870
1,730
2,080
1,890
1,840 | 1,580
1,870
3,020
2,520
1,980 | 1,880
2,030
1,860
7 1,860
1,730 | 2,600
1,950
2,480
2,450
2,320 | 2,050
1,890
2,310
2,940
3,510 | 3,920
3,630
3,310
2,700
3,220 | 1,750
1,870
1,860
1,840
1,700 | 3,100
2,720
4,580
17,100
9,000 | 2,850
2,320
1,970
2,760
4,400 | 1,280
1,880
2,010
1,900
2,020 | | 11 | 1,700
1,610
1,790
1,740
1,670 | 1,600
1,670
1,760
1,800
1,620 | 1,720
1,650
1,470
1,490
1,570 | 2,000
1,950
1,970
1,870
1,780 | 1,680
1,690
1,720
1,900
1,740 | 2,250
2,150
2,100
1,810
2,050 | 6,850
11,800
9,070
5,990
4,440 | 2,880
3,830
2,750
2,730
2,380 | 1,940
1,740
1,470
1,750
1,790 | 4,310
3,180
2,930
2,870
2,880 | 3,740
3,000
3,120
3,020
1,950 | 1,900
1,270
1,900
1,920
1,910 | | 16 | 1,870
1,840
1,720 | 2,370
3,030
2,160
1,600
1,640 | 1,340
1,540
1,590
1,590
1,600 | 1,750
1,620
1,900
2,270
3,970 | 1,870
2,100
2,120
2,040
1,870 | 2,000
1,980
1,940
1,830
1,790 | 4,040
4,310
4,250
4,650
4,430 | 2,020
2,510
2,500
2,430
2,340 | 1,810
1,910
2,460
2,100
1,790 | 2,710
2,470
2,680
2,400
2,560 | 2,410
2,320
2,280
2,120
1,990 | 1,920
1,890
1,850
1,360
1,760 | | 21 | 1,850
1,840
1,740 | 1,900
1,920
1,830
1,640
1,880 | 1,620
1,650
1,520
1,500
1,650 | 2,690
2,350
2,140
2,050
1,960 | 1,940
1,870
1,890
1,820
9,250 | 1,470
1,800
1,880
1,790
2,110 | 4,330
3,480
2,980
3,410
4,390 | 2,240
2,070
1,740
2,300
2,600 | 2,150
1,860
1,800
1,520
1,730 | 2,370
2,210
2,300
2,040
1,520 | 1,950
1,290
3,940
3,910
3,030 | 1,810
2,880
2,340
2,250
2,010 | | 26 | 1,850
1,640
1,600
1,800 | 2,210
2,380
2,580
2,100
2,180 | 1,340
1,440
1,660
1,660
1,600
1,630 | 1,850
1,880
1,810
1,760
1,680
2,130 | 13,900
6,730
4,270 | 2,240
1,960
1,660
1,860
1,730
1,650 | 7,720
7,180
5,710
4,520
5,890 | 1,960
2,090
2,100
2,030
1,710
1,940 | 1,730
1,690
1,710
1,780
1,600 | 2,330
2,670
2,450
2,370
2,460
2,140 | 2,930
2,600
2,170
1,650
2,170
2,210 | 1,420
2,140
2,080
1,990
2,010 | Monthly discharge of Androscoggin River at Rumford Falls, Maine, for the year ending Sept. 30, 1915. #### [Drainage area, 2,090 square miles.] | • | D | ischarge in s | econd-feet. | | Run-off | |---|--|---|--|---|---| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches
on
drainage
area). | | October November December January February March April May June July August September | 3, 030
3, 060
3, 970
13, 900
3, 400
11, 800
10, 300
2, 460
17, 100
4, 400 | 1,600
1,540
1,340
1,460
1,680
1,470
1,570
1,710
1,420
1,520
1,290 | 1,760
1,890
1,790
2,000
2,800
2,150
4,380
3,140
1,830
3,590
2,610
1,900 | 0.842
.904
.856
.957
1.34
1.03
2.10
1.50
.876
1.62
1.25 | 0. 97
1. 01
. 99
· 1. 10
1. 40
1. 19
2. 34
1. 73
. 98
1. 87
1. 44 | | The year | 17, 100 | 1,250 | 2,470 | 1.18 | 16.03 | Note.—The monthly discharge in second-feet per square mile and the run-off in depth in inches, shown by the table, do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. #### MAGALLOWAY RIVER AT AZISCOHOS DAM, MAINE. LOCATION.—At the Aziscohos dam, Oxford County, about 15 miles above the mouth. Drainage area.—215 square miles. RECORDS AVAILABLE.—January 1, 1912, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGE.—Vertical staff in two sections, the lower attached to one of the concrete buttresses of the dam and the upper on the concrete gate tower. DETERMINATION OF DISCHARGE.—Discharge determined from readings of gate openings. Gates have been rated by current-meter measurements. REGULATION.—The capacity of the storage reservoir above the dam is 9,593,000,000 cubic feet, and the reservoir is regulated for power interests below. The operation of the gates is planned to maintain as nearly as possible a constant flow at Berlin, N. H. Results not corrected for storage. COOPERATION.—Discharge computed and furnished for publication by Walter H. Sawyer, agent Union Water Power Co., Lewiston, Maine. Monthly discharge of Magalloway River at Aziscohos dam, Maine, for the year ending Sept. 30, 1915. | [Drainage at | ea, 215 sq | uare miles. | |--------------|------------|-------------| |--------------|------------|-------------| | ٠. | D | Run-off | | | | |---|---|--|--|---|---| | Month. | Maximum. | Minimum, | Mean. | Per
square
mile. | (depth in inches on drainage area). | | October November December January February March April May June July August September | 1, 190
894
1, 200
1, 850
1, 800
1, 040
1, 320
150
147 | 88
669
385
1,000
898
54
69
75
74
80
93 | 264
974
687
1,100
1,190
(a)
573
127
789
97
125 | 1. 23
4. 53
3. 20
5. 12
5. 54
2. 67
. 591
3. 67
. 451
. 582
. 526 | 1. 42
5. 05
3. 69
5. 90
5. 77
2. 98
. 68
4. 10
. 52
. 67
. 59 | $[\]sigma$ Mean discharge Mar. 1–13, 1,450 second-feet; Mar. 23–31, 1,670 second-feet. No record Mar. 14–22 on account of repair to gates. LITTLE ANDROSCOGGIN RIVER NEAR SOUTH PARIS, MAINE. LOCATION.—At left end of an old dam at Bisco Falls, 200 feet below a highway bridge and 5 miles above South Paris, Oxford County. Drainage area.—75 square miles. RECORDS AVAILABLE.—September 14, 1913, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. GAGE.—Chain on left bank installed April 16, 1914; original gage, a vertical staff, was destroyed by ice March 2, 1914; from March 18 to April 9, 1914, a chain gage on a footbridge was used; all gages referred to same datum and at practically same place. DISCHARGE MEASUREMENTS.—Made from highway bridge or by wading. CHANNEL AND CONTROL.—At low and medium stages flow is through opening at left of old stone dam; opening was enlarged by flood of April 9, 1914; water flows over dam at gage height 5.30 feet. Note.—The monthly discharge in second-feet per square mile and the run-off in depth in inches, shown by the table, do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. EXTREMES OF DISCHARGE.—Maximum gage height recorded during year, 9.3 feet at 7 a. m. July 9 (discharge 2,970 second-feet); minimum gage height recorded, 0.8 foot at 4 p. m. October 19, 4 p. m. November 13, and 3 p. m. November 15 (discharge 2 second-feet). WINTER FLOW.—Discharge relation not seriously affected by ice. REGULATION.—Some storage in lakes above station. ACCURACY.—Results good. The following discharge measurement was made by W. G. Hill: April 13, 1915: Gage height, 6.62 feet; discharge, 546 second-feet. Daily discharge, in second-feet, of Little Androscoggin River near South Paris, Maine, from Sept. 14, 1913, to Sept. 30, 1915. | Day. | Sept. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |----------------------------------|----------------------------|--|--|----------------------------------|--------------------------------------|----------------------------------|--|--|--|----------------------------------|----------------------------------|-------------------------------|-----------------------------| | 1913–14.
1
2
3
4 | | 48
56
307
111 | 139
111
86
111 | 115
111
94
90 | 50
53
56
48 | 83
90
70
48 | 500
890
700
500 | 307
890
419
361 | 493
366
292
314 | 47
47
40
54 | 24
· 29
34
20 | 9
4
12
12 | 40
24
16
12
12 | | 5
6
7
8
9
10 | | 58
53
56
53 | 83
83
83
73
131 | 86
83
94
339
237 | 56
53
53
50
58 | 53
51
67
58
64 | 300
200
100
100 | 297
277
257
237
648 | 325
348
264
209
830 | 132
124
108
76
47 | 24
29
29
24
24 | 12
9
4
3
3 | 6
6
12 | | 11
12
13
14 | 14 | 48
56
90
76 | 530
407
277
237
188 | 166
152
123
115
83 | 58
48
48
48
53 | 53
53
53
53
53 | 100
105
110
115
120 | 760
558
458
426
411 | 475
336
303
259
219 | 54
47
34
34
16 | 22
20
20
24
24
29 | 3
4
4
3 | 12
12
3
3
3 | | 15
16
17
18
19
20 | 23
19
43 | 111
119
119
104
100
135 | 156
148
127
119
222 | 90
83
83
83
83
83 | 56
58
43
48
48 | 53
53
53
53
53
53 | 125
130
135
152
152
135 | 397
384
411
442
585
1,320 | 159
149
124
149
140
124 | 29
29
29
18
24
24 | 29
29
12
9
9 | 3
1
4
4
5
6 | 4
' 16
16
16
16 | | 21
22
23
24
25 | 40
184
282
139 | 521
267
156
119
143 | 197
152
135
127
119 | 76
76
73
70
53 | 48.
48
48
48
48
104 | 53
53
53
53
53
53 | 104
93
90
97
104 | 2, 120
675
512
384
336 | 108
108
124
76
132 | 16
29
24
20
24 | 24
20
9
20
12 | 12
12
4
3
6 | 24
20
16
24
24 | | 26
27
28
29
30 | 40
53
36
38
48 | 247
395
272
207
307
170 | 111
111
111
111
111
111 | 58
56
56
58
56
56 | 119
111
115
104
83
83 | 53
53
53 | 135
188
419
395
361
339 | 325
466
475
475
475 | 124
116
92
76
54
47 | 24
20
9
14
24 | 9
16
6
16
12
9 | 6
3
4
12
26
54 | 16
9
16
16
16 | Daily discharge, in second-feet, of Little Androscoggin River near South Paris, Maine, from Sept. 14, 1913, to Sept. 30, 1915—Continued. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |---------------|---------------------------------|-------------------------------|----------------------------|----------------------------------|------------------------------|--|---------------------------------|------------------------------------|----------------------------|--|--------------------------------------|------------------------------| | 1914–15,
1 | 16
16
16
4
12 | 3
9
12
12
12
9 | 34
32
68
54
47 | 9
9
61
47
34 | 84
68
61
29
47 | 458
348
270
239
219 | 140
149
132
140
159 | 1, 180
535
458
411
360 | 54
47
47
54
47 | 54
84
108
100
124 | 100
132
124
124
189 | 92
68
68
61
47 | | 6 | 12
16
9
12
6 | 20
20
4
16
16 | 16
34
34
16
12 | 24
16
149
84
47 | 47
61
61
68
47 | 189
149
140
149
140 | 159
179
249
325
360 | 325
281
219
179
199 | 40
40
34
34
47 | 149
124
100
2,470
585 | 154
140
140
149
169 | 68
61
54
47
47 | | 11 | 4
9
12
6
9 | 16
20
2
16
2 | 16
16
6
12
29 |
47
40
47
40
34 | 61
61
61
29
47 | 132
140
132
116
124 | 466
990
760
426
325 | 159
132
140
159
159 | 54
54
40
47
47 | 325
303
249
209
169 | 159
124
140
140
159 | 34
24
29
29
29 | | 16 | 9
6
2
9
12 | 16
84
54
47
47 | 20
20
16
12
6 | 34
20
34
108
169 | 92
124
108
84
84 | 132
124
124
116
108 | 239
239
219
199
179 | 140
149
124
116
108 | 54
84
84
76
61 | 159
159
159
140
124 | 108
124
116
92
92 | 24
24
29
26
24 | | 21 | 20
20
20
20
20
9 | 34
16
.34
20
20 | 9
12
16
9
6 | 116
76
84
76
68 | 84
68
84
92
830 | 108
124
116
124
159 | 140
124
124
132
219 | 108
68
47
100
84 | 68
61
54
47
54 | 100
100
92
76
54 | 84
40
76
84
124 | 47
179
124
84
61 | | 26 | 20
12
9
16
16
12 | 16
20
24
16
24 | 4
9
9
12
12 | 68
68
61
68
68
61 | 2,470
760
535 | 179
140
140
124
124
124 | 360
325
219
219
325 | 92
108
92
47
47
47 | 47
24
40
40
34 | 194
234
132
159
159
132 | 169
116
100
84
84
100 | 54
61
54
47
34 | Note.—Daily discharge ascertained from two well-defined rating curves, applicable Sept. 14, 1913, to Apr. 9, 1914, and Apr. 10, 1914, to Sept. 30, 1915, respectively. Several discharge measurements obtained subsequent to Sept. 30, 1915, were used to determine the latter curve. No gage-height record Feb. 6, 14, 17-28, Mar. 1-17, 22, Apr. 10-15, June 8, Aug. 19, Dec. 22, and 25, 1914, Jan. 4-6, and Mar. 2-8, 1915, for which daily discharge was estimated. Gage height of flood of Mar. 2, 1914; estimated 7.5 feet by gage observer. Monthly discharge of Little Androscoggin River near South Paris, Maine, from Sept. 14, 1913, to Sept. 30, 1915. ## [Drainage area, 75 square miles.] | | D | ischarge in s | econd-feet. | | Run-off | |--|---|--|--|--|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | | 1913.
September 14–30. | 282 | 11 | 67 | 0.894 | 1.00 | | 1913–14. October November December January February March April May June July August September | 521
530
339
119
90
890
2,120
830
132
34
54 | 48
73
53
43
48
90
2237
47
9
6 | 149
159
99
63
a 57
a 238
a 536
224
41
20
8 | 1.99
2.12
1.32
.840
.760
3.18
7.14
2.99
.548
.267
.106
.187 | 2. 29
2. 36
1. 52
. 97
. 79
3. 67
7. 97
3. 45
. 61
. 31
. 12
. 21 | | The year | 2, 120 | 1 | 134 | 1.79 | 24.27 | | October | 20
84
68
169
2,470
458
990
1,180
84
2,470
189 | 2
2
4
9
29
108
124
47
24
54
40
24 | - 12 22 19 60 216 6162 274 205 50 236 120 54 | 0.160
.293
.253
.800
2.88
2.16
3.65
2.73
.666
3.15
.1.60 | 0. 18
. 33
. 29
. 91
2. 49
4. 07
3. 15
. 74
3. 63
1. 84
. 80 | | The year | 2, 470 | 2 | 119 | 1.59 | 21.55 | a Partly estimated; see footnote to table of daily discharge. ## PRESUMPSCOT RIVER BASIN. PRESUMPSCOT RIVER AT OUTLET OF SEBAGO LAKE, MAINE. LOCATION.—At outlet dam at Sebago Lake and the hydroelectric plant at Eel Weir Falls, Cumberland County, 1 mile below lake outlet. · Drainage area.—436 square miles. RECORDS AVAILABLE.—January 1, 1887, to September 30, 1915. Data also in annual reports of Public Utilities Commission of Maine. Results of a recomputation of all data from 1887 to 1911 are published in the second annual report of Maine State Water Storage Commission. GAGES.—On bulkhead of gatehouse at outlet dam and in forebay and tailrace of power plant. DISCHARGE.—Prior to March, 1904, discharge was determined from records of opening of gates in dam; since March, 1904, flow from lake has been recorded by three Allen meters, one on each of three pairs of 30-inch Hercules wheels; wheels and recording meters checked by current-meter measurements, brake tests of wheels, and electrical readings of the generator output. WINTER FLOW.—Discharge relation not affected by ice. REGULATION.—Sebago Lake (area, 46 square miles) is under complete control. Results not corrected for storage. COOPERATION:—Entire record furnished by S. D. Warren Co. Daily discharge, in second-feet, of Presumpscot River at outlet of Sebago Lake, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |-------------------|--|-----------------------------------|--|--|---------------------------------|--|-----------------------------------|--|----------------------------------|--|--|-----------------------------------| | 1
2
3,
4 | 776
637
705
a 427
745 | a 242
676
672
665
670 | 633
628
632
635
602 | 685
672
4413
658
650 | 582
583
587
590
593 | 555
543
622
622
588 | 538
533
450
a 182
575 | 280
a 89
532
463
478 | 400
417
412
420
415 | 160
55
8.3
a 8.3
8.3 | a 66. 7
335
363
418
255 | 522
533
468
505
a 45 | | 6 | 765 | 668 | a 292 | 630 | 540 | 533 | 512 | 475 | a 113 | 87 | 358 | 168 | | | 758 | 660 | 630 | 542 | 4 210 | a 188 | 357 | 485 | 347 | 133 | 268 | 555 | | | 796 | 4 250 | 642 | 515 | 517 | 550 | 500 | 433 | 330 | 185 | a 85 | 617 | | | 770 | 666 | 630 | 597 | 678 | 555 | 473 | a 140 | 330 | 4 8. 3 | 402 | 615 | | | 705 | 655 | 633 | 4 230 | 662 | 533 | 423 | 425 | 333 | 20 | 360 | 633 | | 11 | 4 253 | 668 | 647 | 643 | 600 | 515 | a 185 | 422 | 332 | 48 | 357 | 567 | | | 728 | 665 | 642 | 633 | 667 | 538 | 482 | 422 | 330 | 148 | 383 | a 215 | | | 802 | 662 | a 320 | 645 | 580 | 532 | 488 | 427 | a 103 | 212 | 450 | 693 | | | 735 | 658 | 600 | 663 | a 193 | 4 182 | 455 | 418 | 320 | 225 | 427 | 635 | | | 753 | a 333 | 625 | 673 | 595 | 553 | 485 | 407 | 297 | 238 | a 102 | 575 | | 16 | 745 | 660 | 637 | 655 | 428 | 552 | 538 | a 120 | 293 | 218 | 467 | 662 | | | 687 | 660 | 640 | a 188 | 503 | 538 | 458 | 422 | 308 | 217 | 485 | 643 | | | a 223 | 638 | 633 | 513 | 545 | 552 | 4185 | 422 | 297 | 4 88 | 540 | 578 | | | 708 | 637 | 635 | 365 | 658 | 545 | 572 | 418 | 295 | 250 | 533 | a 182 | | | 688 | 632 | 4 342 | 420 | - 357 | 542 | 487 | 423 | a 75 | 225 | 537 | 635 | | 21 | 730 | 625 | 630 | 457 | a 180 | a 185 | 492 | 413 | 270 | 223 | 443 | 548 | | | 743 | a 343 | 628 | 533 | 667 | 552 | 657 | 392 | 280 | 265 | a 107 | 640 | | | 735 | 635 | 627 | 567 | 622 | 528 | 523 | a 90 | 280 | 348 | 533 | 667 | | | 658 | 635 | 657 | a 182 | 573 | 500 | 468 | 413 | 283 | 222 | 505 | 632 | | | a 198 | 638 | 435 | 542 | 263 | 470 | a 180 | 417 | 280 | a 68 | 540 | 528 | | 26 | 668
670
677
673
683
652 | 383
367
390
4 335
632 | 257
4 375
623
655
658
680 | 555
585
602
595
538
205 | 353
432
a 195 | 488
462
a 170
527
580
535 | 467
533
518
530
463 | 420
420
418
417
a 50
50 | 280
a 57
132
140
158 | 358
302
292
277
318
253 | 520
520
512
a 103
520
520 | a 178
607
665
665
638 | a Sunday. Monthly discharge of Presumpscot River at outlet of Sebago Lake, Maine, for the year ending Sept. 30, 1915. ## [Drainage area, 436 square miles.] | ı | • | D | ischarge in s | econd-fee. | | Run-off
(depth in | | |--------------|---|------------|----------------|------------|------------------------|---------------------------------|--| | | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | inches on
drainage
area). | | | November | ٠ | 676 | 198
242 | 661
567 | 1.52
1.30 | 1. 75
1. 45 | | | January | | . 685 | 257
182 | 578
527 | 1, 33
1, 21 | 1.53
1.40 | | | March | | 622 | 180
170 | 498
495 | 1. 14
1. 14 | 1. 19
1. 31 | | | April
May | *************************************** | 657
485 | 180
50, 0 | 457
361 | 1.05
828 | 1.17
.95 | | | June | | . 420 | 56.7
8.3 | 278
176 | . 638 | .71 | | | August | | . 540 | 66. 7
45. 0 | 388
527 | . 890
1. 21 | 1.03
1.35 | | | The ye | ar | 802 | 8,3 | 459 | 1.05 | 14, 31 | | Note.—The monthly discharge in second-feet per square mile and the run-off in depth in inches shown by the table do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. #### SACO RIVER BASIN. SACO RIVER AT WEST BUXTON, MAINE. Location.—At hydroelectric plant of Portland Electric Co., at West Buxton, York County. Drainage area.—1,550 square miles. RECORDS AVAILABLE.—October 19, 1907, to September 30, 1915. Data also in annual reports
of Public Utilities Commission of Maine. GAGES.—One in pond above dam; another in tailrace of power house. CHANNEL AND CONTROL.—Crest of concrete dam about 300 feet long. DISCHARGE.—Flow over dam and through rated wheels of power plant determined by means of hourly gage readings. WINTER FLOW.—Discharge relation not affected by ice. REGULATION.—Dams on numerous but comparatively small lakes in basin above station; storage regulation probably affects regimen of stream but not to extent that obtains in other basins in Maine where natural storage facilities are better and more fully developed. COOPERATION.—Records furnished by Cumberland County Power & Light Co. Daily discharge, in second-feet, of Saco River at West Buxton, Maine, for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------|--|---------------------------------------|--|--|-------------------------|--|---|--|---|--|--|---| | 1 | 856 | 808 | 1,010 | 769 | 1,770 | 9, 100 | 2,590 | 6, 160 | 1,780 | 1,060 | 2,160 | 2,340 | | 2 | 997 | 623 | 1,100 | 765 | 1,790 | 9, 120 | 2,360 | 6, 530 | 2,150 | 1,550 | 2,670 | 2,290 | | 3 | 992 | 759 | 1,280 | 533 | 1,650 | 8, 730 | 2,880 | 6, 830 | 1,670 | 1,640 | 2,730 | 2,260 | | 4 | 928 | 675 | 1,200 | 681 | 1,590 | 7, 520 | 2,800 | 6, 710 | 1,330 | 3,040 | 2,890 | 2,120 | | 5 | 701 | 656 | 1,270 | 652 | 1,650 | 7, 620 | 2,950 | 6, 520 | 1,120 | 3,630 | 3,240 | 2,010 | | 6 | 857 | 792 | 1,060 | 609 | 1,570 | 6,970 | 2,970 | 6,310 | 740 | 4, 260 | 3,600 | 2,070 | | | 967 | 919 | 1,080 | 1,040 | 1,300 | 6,440 | 3,410 | 6,070 | 1,420 | 4, 150 | 3,490 | 2,020 | | | 682 | 615 | 937 | 1,080 | 1,960 | 6,310 | 3,670 | 5,860 | 1,440 | 4, 570 | 3,210 | 2,060 | | | 762 | 742 | 1,150 | 1,600 | 1,970 | 5,930 | 3,740 | 5,460 | 1,040 | 8, 420 | 3,790 | 1,800 | | | 742 | 770 | 1,000 | 674 | 1,830 | 5,580 | 3,920 | 5,310 | 1,380 | 8, 690 | 3,820 | 1,570 | | 11 | 705 | 730 | 1,040 | 1,200 | 1,760 | 5,340 | 4,030 | 4,960 | 1,320 | 8, 150 | 3,420 | 1,600 | | | 723 | 694 | 1,290 | 1,200 | 1,610 | 5,030 | 5,500 | 4,320 | 1,080 | 7, 870 | 3,380 | 1,310 | | | 684 | 737 | 562 | 1,170 | 1,600 | 4,840 | 6,580 | 4,220 | 897 | 7, 140 | 3,120 | 1,620 | | | 693 | 829 | 977 | 1,160 | 1,320 | 4,310 | 6,890 | 3,830 | 1,370 | 7, 200 | 2,950 | 1,400 | | | 519 | 639 | 950 | 1,170 | 1,870 | 4,340 | 7,470 | 3,700 | 1,510 | 6, 060 | 2,550 | 1,530 | | 16 | 428 | 910 | 1,060 | 1,280 | 1,960 | 3,800 | 7,960 | 3,320 | 1,210 | 5, 480 | 2,970 | 1,370 | | | 472 | 1,300 | 1,030 | 1,220 | 2,550 | 3,760 | 7,740 | 3,380 | 1,360 | 4, 890 | 2,860 | 1,320 | | | 474 | 1,110 | 945 | 1,370 | 2,360 | 3,400 | 7,480 | 3,100 | 1,090 | 2, 080 | 2,620 | 1,380 | | | 559 | 987 | 929 | 1,850 | 2,230 | 3,110 | 7,470 | 2,690 | 1,020 | 4, 410 | 2,580 | 1,190 | | | 730 | 980 | 496 | 1,960 | 2,260 | 2,900 | 6,980 | 2,420 | 1,060 | 4, 020 | 2,480 | 1,510 | | 21 | 704 | 808 | 847 | 2,490 | 1,900 | 2,800 | 6, 460 | 2, 460 | 1,690 | 3,830 | 2,400 | 1,630 | | | 689 | 692 | 734 | 2,100 | 2,370 | 2,850 | 6, 170 | 2, 280 | 1,730 | 3,600 | 1,950 | 1,580 | | | 757 | 941 | 681 | 1,820 | 2,270 | 2,710 | 5, 810 | 2, 000 | 1,690 | 3,370 | 2,440 | 1,520 | | | 605 | 850 | 684 | 1,760 | 2,560 | 2,920 | 5, 530 | 2, 390 | 1,620 | 3,020 | 2,700 | 1,540 | | | 465 | 876 | 770 | 2,380 | 4,960 | 2,990 | 4, 750 | 2, 220 | 1,460 | 2,470 | 2,450 | 1,680 | | 26 | 808
730
598
540
541
558 | 953
1,050
1,320
830
1,220 | 643
393
562
738
833
852 | 1,940
1,790
1,650
1,820
1,660
1,380 | 8,980
9,290
8,990 | 3, 100
3, 140
2, 830
3, 190
2, 940
2, 800 | 5,140
5,180
5,060
5,080
4,990 | 2,320
2,060
1,930
1,610
1,450
1,410 | 1,160
960
1,210
1,370
1,430 | 2,970
2,790
2,760
2,730
2,800
2,590 | 2,780
2,620
2,510
2,150
2,540
2,390 | 1,350
1,930
1,890
1,780
1,750 | # Monthly discharge of Saco River at West Buxton, Maine, for the year ending Sept. 30, 1915. [Drainage area, 1,550 square miles.] | | D | ischarge in s | econd-feet. | , | Run-off | |--|--|--|---|---|---| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | | October November December January February March April May June June July Angust September | 1,320
1,290
2,490
9,290
9,120
7,960
6,830
2,150
8,690
3,820 | 428
615
393
533
1,300
2,710
2,360
1,410
740
1,060
1,950
1,190 | 692
861
907
1, 380
2, 780
4, 720
5, 120
3, 860
1, 340
4, 240
4, 240
2, 820
1, 710 | 0.446
.556
.586
.891
1.79
3.04
3.30
2.50
.865
2.74
1.82
1.10 | 0.51
.62
.68
1.03
1.86
3.50
3.68
2.88
.97
3.16
2.10
1.23 | | The year | 9, 290 | 393 | 2, 540 | 1.64 | 22.22 | #### MERRIMACK RIVER BASIN. #### MERRIMACK RIVER AT FRANKLIN JUNCTION, N. H. Location.—At covered wooden bridge of the Boston & Maine Railroad near Franklin Junction, Merrimack County, about a mile below the confluence of Pemigewasset and Winnepesaukee rivers. Drainage area.—1,460 square miles. RECORDS AVAILABLE.—July 8, 1903, to September 30, 1915. Gage.—Chain fastened to floor of bridge on upstream side over the west channel; a gage painted on the downstream right-hand side of the center pier is used by the United States Weather Bureau for high-water readings. DISCHARGE MEASUREMENTS.—Made from upstream side of the bridge. CHANNEL AND CONTROL.—Coarse gravel and bowlders; fairly permanent. EXTREMES OF DISCHARGE.—Maximum stage recorded during the two years ending September 30, 1915, 19.5 feet at 5 p. m. April 21, 1914 (discharge determined from extension of rating curve, 32,300 second-feet); minimum stage for same period, 3.8 feet at 10 a. m. September 7, 1914 (discharge, 850 second-feet). WINTER FLOW.—Discharge relation affected by ice during the winter months. REGULATION.—Flow affected by storage in Winnepesaukee, Squam, and New Found lakes, and by the operation of mills above the station. COOPERATION.—Gage heights furnished by the proprietors of locks and canals on Merrimack River, Lowell, Mass. Discharge measurements of Merrimack River at Franklin Junction, N. H., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | |---------------------|---------------------------------------|-----------------------|--------------------------| | Aug. 27.
Sept. 7 | Pierce and Thweatt. Thweatt and Adams | Feet.
5.72
4.44 | Secft.
2,960
1,520 | Note.—Additional measurements, subsequent to Sept. 30, were used in determining the stage-discharge relation. Daily discharge, in second-feet, of Merrimack River at Franklin Junction, N. H., for the years ending Sept. 30, 1914-15. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |---------------|--|--|--|---|--|--|---|--|---|--|--|--| | 1913–14.
1 | 940
1,080
1,670
1,550
1,440 | 1,330
1,620
1,920
1,790
1,670 | 1,790
1,920
1,790
1,790
1,790
1,920 | 1,670
1,790
1,670
1,670
1,670 | 2, 180
2, 180
2, 180
2, 180
1, 920 | 5,060
7,820
19,300
12,000
6,770 | 6,770
9,920
8,550
7,180
5,810 | 10,000
6,980
6,770
6,560
7,190 | 2,050
2,050
1,920
2,050
3,160 | 1,440
1,790
1,920
1,670
1,580 | 1,230
1,360
1,500
1,330
1,330 | 2,180
1,670
1,550
1,440
1,330 | | 6 | | 1,500
1,440
1,500
5,800
10,100 | 1,790
2,550
3,310
3,620
1,670 | 1,550
1,440
1,330
1,330 | 1,670
1,670 | 4,280
3,310 | 4,450
4,280
4,280
6,140
8,450 | 7,820
7,190
6,980
6,980
6,360 | 3,310
3,160
3,010
2,180
1,920 | 1,500
1,670
1,790
1,670
1,550 | 1,230
1,230
1,130
1,280
1,440 | 1,090
850
1,330
1,230
1,330 | | 11 | | 6,350
5,740
3,310
3,010
2,720 | 1,330
2,180
2,180
2,120
2,050 | | | 2,720
2,580
2,180
2,050
2,120 | 8,240
7,820
7,400
6,140
5,740 | 5,740
5,740
5,740
5,740
5,740
5,350 | 1,790
1,670
1,440
1,550
1,670 | 1,550
1,670
1,790
1,790
1,670 | 1,330
1,380
1,380
1,380
1,330 | 1,230
1,230
1,230
1,230
1,230 | | 16 | |
2,650
2,580
2,310
2,180
2,050 | | | | | 5,740
4,980
4,800
11,400
18,000 | 4,620
4,200
3,780
3,460
3,310 | 1,790
1,670
1,670
1,670
1,670 | 1,550
1,440
1,440
1,550
1,670 | 1,280
1,230
1,380
1,330
1,330 | 1,230
1,280
1,230
1,230
1,230 | | 21 | 8,450
4,620
2,720
2,440
2,050 | 2,180
2,050
1,980
1,920
1,920 | | | | | 31,200
19,100
9,710
7,820
5,940 | 3,310
3,780
3,620
3,390
3,160 | 1,610
1,550
1,670
1,550
1,550 | 1,670
1,330
1,440
1,280
1,230 | 1,440
1,380
1,360
1,330
1,330 | 1,230
1,130
1,130
1,030
1,030 | | 26 | 3,080
4,110
3,940
3,620
3,160
2,720 | 2,050
1,920
1,790
1,790
1,790 | | | | | 6,780
7,610
8,660
9,290
13,100 | 3,010
2,860
2,580
2,440
2,050
2,050 | 1,500
1,410
1,320
1,230
1,330 | 1,200
1,180
1,130
1,130
1,500
1,380 | 1,230
1,330
1,330
1,440
1,940
2,440 | 1,030
1,180
1,330
1,330
1,330 | | 1914–15.
1 | 1,280
1,230
1,130
1,180
1,230 | 1,080
1,030
1,030
1,030
1,030 | 1,330
1,380
1,440
1,330
1,330 | | | 4,800
3,620
3,620
3,620
3,160 | 2,050
1,920
1,790
1,860
1,920 | 3,780
3,860
3,940
3,620
3,460 | 1,440
1,380
1,330
1,280
1,230 | 1,670
4,280
6,350
5,940
5,540 | 2,510
2,580
3,780
3,460
4,110 | 2, 180
1, 920
1, 920
1, 790
1, 670 | | 6 | 1,230
1,230
1,180
1,130
1,030 | 1,130
1,130
1,060
985
940 | 1,230
1,130
1,030
1,440
1,440 | | 1,790
1,790 | 2,860
2,790
2,720
2,720
2,580 | 2,050
2,050
2,720
2,720
3,010 | 3,160
2,720
2,440
2,650
2,860 | 1,200
1,180
1,180
1,130
1,080 | 4,450
3,780
3,940
19,300
16,900 | 4,110
3,780
3,540
3,310
3,620 | 1,550
1,440
1,440
1,440
1,380 | | 11 | 1,030
1,030
1,030
1,030
1,030 | 1,130
1,030
1,130
1,030
1,030 | 1,440
1,030 | 1,790
1,550
1,440
1,550 | 1,500
1,440
1,500
1,520
1,550 | 2,440
2,310
2,180
2,120
2,050 | 9,400
15,800
13,100
5,740
4,450 | 2,720
2,580
2,310
2,180
2,050 | 1,230
1,180
1,230
1,280
1,280 | 10,500
4,110
3,620
3,310
1,550 | 3,460
3,160
3,010
3,160
2,940 | 1,380
1,410
1,440
1,440 | | 16 | 1,130
1,130
1,060
985
1,130 | 1,030
3,010
2,180
2,180
1,920 | | 1,440
1,470
1,500
2,180
5,540 | 2,050
3,010
2,720
2,580
2,310 | 2,050
2,050
1,920
1,920
1,920 | 3,620
3,460
3,620
3,780
3,780 | 1,980
1,920
1,790
1,790
1,920 | 1,180
1,440
1,440
1,550
1,610 | 2,720
3,010
2,860
2,720
2,580 | 2,720
2,650
2,580
2,440
2,440 | 1,500
1,440
1,330
1,380
1,440 | | 21 | | 1,440
1,280
1,130
1,130
1,230 | | | 2,180
2,050
1,920
1,920
8,450 | 1,980
2,050
1,920
1,920
2,310 | 3,620
3,160
3,010
3,160
3,640 | 1,920
1,920
1,860
1,790
1,670 | 1,670
1,550
1,330
1,280
1,280 | 2,440
2,440
2,310
2,310
2,380 | 1,920
3,100
4,280
4,110
3,620 | 1,500
1,920
2,180
1,670
1,440 | | 26 | 1,030
1,180
1,130
1,130
1,230
1,130 | 1,030
1,230
1,230
1,280
1,330 | | 2,580
2,050
1,920
1,790 | 28,600
10,600
7,700 | 2,310
2,310
2,240
2,180
2,180
2,050 | 4,110
3,780
3,940
3,620
3,460 | 1,500
1,670
1,790
1,670
1,580
1,500 | 1,200
1,120
1,030
1,440
1,330 | 2,440
2,720
2,440
2,860
2,720
2,440 | 3,940
3,010
3,010
2,530
2,050
2,180 | 1,380
1,330
1,440
1,550
1,550 | Note.—Discharge relation affected by ice Jan. 10 to Feb. 1, 1914, Feb. 8-28, 1914, Dec. 13, 1914, to Jan. 11, 1915, and Jan. 30 to Feb. 8, 1915. Mean discharge, during periods of ice, estimated by comparison with records at Garvins Falls as follows: Jan, 10-25, 1914, 1, 170 second-feet; Jan. 26-31, 1914, 2, 270 second-feet; Feb. 1, 1914, 2, 400 second-feet; Feb. 8-28, 1914, 1,420 second-feet; Dec. 13-31, 1915, 937 second-feet; Jan. 1-5, 1915, 940 second-feet; Jan. 6-11, 1915, 1,800 second-feet; Jan. 30-31, 1915, 1,550 second-feet; Feb. 1-8, 1915, 1,440 second-feet. Monthly discharge of Merrimack River at Franklin Junction, N. H., for the years ending Sept. 30, 1914-15. ## [Drainage area, 1,460 square miles.] | | D | ischarge in s | econd-feet. | | Run-off
(depth in | | |--|--|--|--|---|---|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | inches on
drainage
area). | Accu-
racy. | | 1913–14. | | | • | | | | | October November December January February March April May June July August September | 19,300
31,200
10,000
3,310
1,920
2,440
2,180 | 940
1,330
1,130
1,670
4,280
2,050
1,230
1,130
1,130
850 | 2,160
2,700
1,860
1,500
1,580
4,120
8,840
4,930
1,870
1,520
1,390
1,270 | 1. 48
1. 85
1. 27
1. 03
1. 08
2. 82
6. 05
3. 38
1. 28
1. 04
. 952
. 870 | 1. 71
2. 06
1. 46
1. 19
1. 12
3. 25
6. 75
3. 90
1. 43
1. 20
1. 10 | B.
B.
B.
C.
C.
B.
B.
B. | | The year | 31,200 | 850 | 2,810 | 1.92 | 26.14 | | | 1914–15. October November December January February March April June July August September | 4,800
15,800
3,940
1,670
19,300
4,280 | | 1,150
1,280
1,080
1,970
3,530
2,480
4,140
2,340
1,300
4,410
3,130
1,560 | 0. 788
. 877
. 740
1. 35
2. 42
1. 70
2. 84
1. 60
. 890
3. 02
2. 14
1. 07 | 0. 91
98
. 85
1. 56
2. 52
1. 96
3. 17
1. 84
. 99
3. 48
2. 47
1. 19 | B. B. C. C. B. C. B. B. B. B. B. B. | | The year | 19,300 | | 2,360 | 1, 62 | 21. 92 | | #### MERRIMACK RIVER AT GARVINS FALLS, N. H. LOCATION.—At the dam of the Manchester Traction, Light & Power Co., at Garvins Falls, 4 miles below Concord, Merrimack County. Drainage area.—2,340 square miles. RECORDS AVAILABLE.—1904 to September 30, 1915. Dam.—During 1903—4 an overfall dam of the ogee type was completed. This dam is 550 feet long between abutments and about 800 feet over all, including the head gates, and is of stone masonry substantially built. The new dam and head gates are situated about 800 feet downstream from the old dam, which was destroyed on the completion of the new structure. Canals and wasteways.—A canal about 500 feet long and 74 feet wide at the water line has been completed; in the sides of this canal wasteways are provided, one 90 feet long at elevation 102 feet (the main crest of the dam being taken as elevation 100) and another 45 feet long at elevation 103 feet. A waste gate, 10 feet wide and capable of being lowered to elevation 93 feet, is also provided for use in floating out any obstacles which lodge against the rocks. Turbines.—Six triplex turbines of somewhat more than 1,000 horsepower each and one small duplex turbine of 75 horsepower used in running exciters. Each large unit has three 39-inch runners mounted on a horizontal shaft which revolves at 180 revolutions a minute. Two of the wheels in each set discharge through a common T center and draft tube near the forebay wall. The third wheel is set opposite a quarter turn at the downstream end of the casing and discharges through this quarter turn into a smaller draft tube. The top of the penstock opening is at elevation 95.5. The lower ends of the draft tubes are horizontal and are about 2 feet below the elevation of usual tail water. The gates for the runners are of the plain, cylindrical pattern, without fingers, and are controlled by governors. The average head on the wheels is about 29 feet, and there are six 650-kilowatt 3-phase generators directly connected with the turbines. UTILIZATION OF POWER.—The power developed is transmitted at 12,000 volts tension to a substation at Manchester, about 14 miles away, where it is transformed to a lower voltage and utilized for light and power. COMPUTATIONS OF DISCHARGE.—Careful records of the pond and tailrace levels and wheel openings have been kept by the company since the dam was completed in 1904 and have been furnished for computations of discharge. WINTER FLOW.—Flow over dam is somewhat affected by ice during winter. Accuracy.--Wheel ratings somewhat uncertain and records considered only fair. COOPERATION.—Computations of discharge for 1914 and 1915 were made by Metcalf & Eddy, consulting engineers. Boston. Daily discharge, in second-feet, of Merrimack River at Garvins Falls, N. H., for the years ending Sept. 30, 1914-15. | Day. | Oet. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |------------------------------|----------------------------------|---|---|---|---|---|--|---
---|--|---|---| | 1913-14.
1
2
3
4 | 2, 233 | 3,425
2,885
2,910
2,730 | 2,602
2,751
2,651
2,818 | 2,000
2,280
1,970
1,740 | 2,820
3,120
3,070
3,040 | 3,820
5,840
13,240
16,880 | 12,240
14,380
19,820
16,310 | 18,820
16,490
12,860
11,710 | 2,590
2,680
2,700
2,500 | 1,900
1,920
1,820
2,280 | 1,640
1,110
1,880
1,890 | 2,760
2,330
2,060
1,950 | | 5
6
7
8
9 | 2,364
2,293 | 2,721
2,611
2,554
1,884 | 3,050
3,122
2,527
3,488
5,566 | 2,250
2,250
2,290
2,310
2,270 | 2,910
2,820
2,710
2,330
2,460 | 15, 110
12, 570
10, 230
8, 490
7, 450 | 10,790
9,320
8,860
10,750 | 11, 820
12, 680
13, 100
12, 330
10, 610 | 3,670
5,570
3,960
3,390
3,100 | 2, 270
2, 270
2, 620
2, 510
2, 650 | 1,820
1,750
1,700
1,590
1,130 | 1,550
1,640
1,650
1,610
1,690 | | 10
11
12
13
14 | 2,076
1,630
918 | 3,068
10,020
6,441
4,841 | 4,689
4,257
3,144
3,349 | 1,630
2,180
1,880 | 2,540
2,350
2,870
2,090 | 6,220
5,540
5,010
4,610 | 17,130
14,960
12,860
13,360 | 11,910
10,700
9,710
8,980 | 2,840
2,840
2,200
2,110 | 2,550
2,340
2,320
3,230 | 1,550
1,750
1,560
1,590 | 1,800
1,820
1,580
1,440 | | 16
17
18 | 2,524
2,370
2,197
2,090 | 3,934
3,562
3,123
3,071
3,204 | 2,934
3,086
3,284
3,123
3,041 | 1,190
1,530
1,610
1,930
1,400 | 2,050
1,820
2,210
1,960
2,240 | 4,320
3,970
3,960
4,140
4,360 | 10, 110
10, 530
10, 020 | 9,440
9,360
8,170
6,810
6,520 | 1,920
1,820
2,030
2,210
2,180 | 2,680
2,500
2,180
1,980
1,780 | 1,620
1,680
1,130
1,700
1,790 | 1,680
1,270
1,710
1,660
1,560 | | 19
20
21
22
23 | 1,518
2,133
2,812
5,710 | 2,976
2,949
3,876
3,977
3,141 | 1,829
2,451
2,018
2,633
2,776 | 1,600
2,080
2,000
2,000
2,010 | 2,150
2,030
2,000
1,720
1,840 | 4,690
4,770
4,210
3,970
3,780 | 10,560
15,840
30,140
32,490
20,360 | 6,420
6,100
5,920
5,620
5,190 | 2,300
2,230
1,700
2,080
2,040 | 1,230
2,000
1,920
1,920
1,880 | 1,730
1,790
1,890
1,960
1,600 | 1,280
940
1,470
1,710
1,580 | | 26
27 | 2, 288
2, 664
3, 926 | 3,126
3,067
2,983
2,501 | 2, 202
2, 345
2, 274
2, 368 | 1,960
1,540
2,230
2,650 | 1,950
1,940
1,900
1,980
2,780 | 3,700
3,580
4,010
5,550 | 15,080
12,490
10,880
13,030 | 4,790
4,460
3,860
3,710 | 2,020
2,110
1,900
1,700 | 1,860
1,560
1,100
1,680 | 1,890
1,630
1,670
1,530 | 1,390
1,660
1,420
840 | | 28
29
30 | 4,927
3,886
3,294 | 2,608
2,687
2,079 | 2,065
2,410
2,534
2,410 | 3,070
3,180
3,310
3,120 | 2,780 | 10, 180
16, 680
16, 190
13, 920 | 16, 220
17, 750
18, 850 | 3,720
3,450
3,020
2,670 | 1,500
2,390
1,810 | 1,720
1,570
1,640
1,880 | 1,630
1,520
2,450
3,250 | 1,640
1,850
1,630 | Daily discharge, in second-feet, of Merrimack River at Garvins Falls, N. H., for the years ending Sept. 30, 1914–15—Continued. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------------------------------------|---|---|--|--|---|--|---|--|---|--|--|---| | 1914-15.
1,
2
3
4
5 | 1,200
1,770
1,360
800
1,380 | 1,120
1,490
1,380
1,600
1,530 | 2,240
2,210
2,140
2,530
2,650 | 1,240
1,580
1,130
1,600
1,570 | 2,300
2,460
2,330
2,160
2,250 | 13,880
10,670
6,770
6,090
6,970 | 3,310
3,480
3,590
3,310
3,330 | 7,370
9,730
7,310
6,420
5,700 | 2,340
2,140
1,910
1,710
1,600 | 1,850
2,280
5,140
7,590
10,040 | 4,700
4,860
6,980
6,260
7,550 | 3,690
3,460
3,290
3,070
3,000 | | 6
7
8
9
10 | 1,430
1,460
1,550
1,350
1,310 | 1,480
1,570
1,110
1,450
1,570 | 2,010
1,780
2,190
2,110
2,100 | 1,960
1,720
2,010
2,860
2,590 | 2,340
2,370
2,720
3,100
3,240 | 5,140
5,080
4,910
4,870
4,680 | 3,500
3,970
4,240
4,990
6,430 | 5,160
4,460
4,200
3,970
4,370 | 1,210
1,820
1,600
1,880
1,760 | 7,980
7,050
7,270
31,320
27,600 | 7,480
6,830
6,440
6,060
6,680 | 2,940
2,750
2,750
2,260
2,320 | | 11
12
13
14
15 | 970
1,070
1,370
1,380 | 1,540
1,740
1,570
1,380
1,090 | 1,920
1,830
910
1,790
1,660 | 2,570
2,490
2,390
2,220
2,230 | 3,150
2,790
2,600
2,480
2,410 | 4,460
4,170
3,710
3,480
3,670 | 7,520
15,290
19,620
13,640
10,090 | 4,010
3,860
3,510
3,320
3,270 | 1,900
1,630
1,200
1,830
1,890 | 17,500
7,410
6,760
5,990
2,850 | 6,330
5,860
3,580
5,720
5,390 | 2,040
1,140
2,420
2,050
1,930 | | 16
17
18
19
20 | 1,090 | 1,510
1,940
3,030
2,470
2,100 | 1,550
1,920
1,670
1,610
1,210 | 2,120
1,430
2,370
3,430
6,410 | 2,950
4,050
5,400
5,120
4,400 | 4,360
3,160
3,080
3,130
2,950 | 8,260
7,100
6,750
6,080
5,800 | 2,810
2,660
2,740
2,860
2,530 | 1,790
1,920
1,920
2,310
1,690 | 4,930
5,510
5,230
4,950
4,670 | 5,060
4,900
4,740
4,480
4,420 | 1,710
2,280
1,890
1,020
2,160 | | 21
22
23
24
25 | 2,150
1,510 | 1,900
1,260
1,590
1,730
2,010 | 1,620
1,370
1,550
1,380
970 | 8,470
6,620
5,340
4,040
3,600 | 4,000
3,630
3,570
3,730
4,970 | 2,630
3,310
3,170
3,370
3,730 | 5,630
5,170
4,420
4,060
3,860 | 2,590
2,650
2,260
2,540
2,390 | 2,190
2,410
2,680
2,140
2,250 | 4,610
4,610
4,350
4,290
4,380 | 3,630
5,730
7,840
7,550
6,690 | 1,950
2,550
3,140
3,240
2,430 | | 26 | 1,880
1,620
1,450 | 1,290
2,030
1,770
1,300
2,130 | 1,330
980
1,340
1,640
1,490
1,670 | 3,690
3,350
3,300
3,070
2,780
2,320 | 27,610
26,830
18,700 | 4,640
4,820
4,030
3,980
3,660
3,420 | 5,670
6,560
6,000
4,810
4,520 | 2,480
2,450
2,420
2,440
1,870
1,950 | 1,890
840
2,140
1,620
1,750 | 4,480
5,120
4,540
5,250
4,990
4,540 | 7,260
5,450
5,380
4,500
3,630
3,690 | 1,970
2,580
2,090
2,590
2,400 | Monthly discharge of Merrimack River at Garvins Falls, N. H., for the years ending Sept. 30, 1914-15. # [Drainage area, 2,340 square miles.] | | | | | | - | |-----------|----------|---------------|-------------|------------------------|---------------------------------| | | D | ischarge in s | econd-feet. | | Run-off
(depth in | | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | inches on
drainage
area). | | 1913–14. | | | 1 | | | | October | 5,710 | 918 | 2,675 | 1.14 | 1.31 | | | 10,020 | 1,884 | 3,385 | 1.45 | 1.62 | | November | 5,566 | 1,829 | 2,896 | 1.24 | 1.43 | | January | | 1,190 | 2,120 | .906 | 1.04 | | February | | 1,720 | 2,350 | 1.00 | 1.04 | | March | | 3,580 | 7,450 | 3, 18 | 3.67 | | April | | 8,860 | 14,700 | 6.28 | 7.01 | | Mav | 18,820 | 2,670 | 8,420 | 3.60 | 4.15 | | June, | 5,570 | 1,500 | 2,470 | 1.06 | 1.18 | | July | | 1,100 | 2,050 | . 876 | 1.01 | | August | | 1,110 | 1,720 | . 735 | 1.85 | | September | 2,760 | 840 | 1,640 | .701 | .78 | | The year | 32,490 | 840 | 4,330 | 1.85 | 25. 09 | | 1914-15. | | | | | | | October | | 800 | 1,400 | 0, 598 | 0.69 | | November | 3,030 | 1,090 | 1,660 | .709 | 0.79 | | December | 2,650 | 910 | 1,720 | .735 | . 85 | | January | | 1,130 | 2,980 | 1.27 | 1.46 | | February | 27,610 | 2,160 | 5,490 | 2.35 | 2, 45 | | March | 13,880 | 2,630 | 4,710 | 2.01 | 2.32 | | April | 19,620 | 3,310 | 6,370 | 2.72 | 3.04 | | May | 9,730 | 1,870 | 3,750 | 1.60 | 1.84 | | June | | 840 | 1,870 | .799 | .89
3.57 | | July | | 1,850 | 7,260 | 3.10
2.42 | 3.57
2.79 | | August | | 3,580 | 5,670 | 1.04 | 1.16 | | September | 3,690 | 1,020 | 2,440 | 1.04 | 1.10 | | The year | 31,320 | 800 | 3,770 | 1.61 | 21.85 | | | | | | | | #### MERRIMACK RIVER AT LAWRENCE, MASS. LOCATION.—At the dam of the Essex Co. in Lawrence, Essex County. Drainage area. —Total of Merrimack River basin above Lawrence, 4,663 square miles; net drainage area, exclusive of diverted parts of Nashua and Sudbury River and Lake Cochituate basins, 4,452 square miles. RECORDS AVAILABLE.—January 1, 1880, to September 30, 1915. COMPUTATIONS OF DISCHARGE.—Accurate record is kept of the flow over the dam and through the various wheels and gates. This flow includes the water wasted into the Merrimack from the Nashua, Sudbury, and Cochituate drainage basins. Estimates of the quantity wasted from these
basins is furnished by the Metropolitan Water and Sewerage Board of Boston and subtracted from the quantity measured at Lawrence to obtain the net flow from the net drainage area of 4,452 square miles. DIVERSIONS.—Practically the entire flow of the South Branch of Nashua River, Sudbury River, and Lake Cochituate is diverted for use by the Metropolitan water district of Boston. REGULATION.—Flow regulated to some extent by storage in Lake Winnepesaukee. The low water flow of the stream is affected by operation of various power plants above Lawrence. Storage.—There are several reservoirs in the basin. It is estimated that the water surface is about 3.5 per cent of the entire drainage area. Accuracy.—These records are obtained with great care and are considered good; those for the later years are probably more accurate than those for the earlier years. COOPERATION.—The entire record has been furnished by R. A. Hale, principal assistant engineer of the Essex Co. Daily discharge, in second-feet, of Merrimack River at Lawrence, Mass., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |-----------------------------------|----------------------------------|---|--|--|---|--|--|--|--|--|--|---| | 1914–15.
1
2
3
4
5 | 938
119 | 143
1,718
1,736
1,768
1,770 | 2,339
2,317
2,488
2,726
1,887 | 1,655
1,167
250
1,855
1,867 | 5,069
4,098
3,648
3,291
3,299 | 20, 559
14, 444
11, 321
9, 971
8, 539 | 4,660
4,449
3,679
4,090
5,608 | 6,784
11,227
11,020
9,462
8,362 | 4,089
3,298
3,077
2,676
1,799 | 2,681
3,172
4,797
10,559
10,635 | 5, 333
6, 352
6, 025
7, 765
15, 635 | 4,470
4,221
3,977
3,083
2,586 | | 6
7
8
9
10 | | 1,729
1,006
119
1,698
1,724 | 710
3,656
2,919
2,673
2,424 | 1,794
2,531
3,533
4,226
4,300 | 2,431
1,701
5,285
4,600
4,897 | 7,427
6,967
7,918
6,106
6,593 | 5, 104
5, 461
6, 298
6, 843
7, 736 | 7, 476
6, 666
5, 869
5, 358
6, 802 | 428
2,302
2,411
2,540
2,536 | 9, 266
7, 845
6, 774
15, 303
29, 926 | 21,786
18,978
15,753
15,118
14,443 | 2,343
4,498
3,884
2,633
2,878 | | 11
12
13
14 | 1,660
1,730
1,719 | 1,655
1,647
1,744
1,008
125 | 2,199
1,550
458
2,638
2,980 | 5, 178
4, 211
4, 270
4 462
4, 371 | 4,664
4,383
3,022
2,901
5,179 | 6,325
6,088
4,685
4,548
6,321 | 8,790
14,045
20,562
18,707
14,274 | 5,912
5,446
5,035
4,902
3,651 | 2,226
1,335
152
2,238
2,389 | 22,714
16,713
12,342
9,327
7,865 | 13 451
11,503
10,060
8,902
8,449 | 1,949
896
3,884
3,206
2,809 | | 16
17
18
19
20 | 1,028
126
1,732
1,912 | 1,770
1,796
1,885
2,553
2,801 | 2,627
2,377
2,371
1,451
192 | 2,823
1,961
5,351
10,376
13,364 | 5,083
6,750
8,218
8,202
8,090 | 5, 295
4, 466
4, 666
4, 761
3, 581 | 11,538
9,608
8,536
8,227
8,140 | 3,610
5,418
4,352
3,868
3,745 | 2,453
2,065
1,919
1,221
947 | 7, 114
5, 835
5, 143
5, 907
5, 218 | 9,027
9,209
7,929
6,982
6,180 | 2,700
2,792
1,989
487
2,684 | | 21
22
23
24 | 1,817
997
115 | 1,924
696
3,035
2,870
2,873 | 2,028
2,178
2,195
2,119
541 | 13,589
10,991
7,688
6,546
7,349 | 6,080
6,030
7,560
7,150
9,100 | 3,650
5,520
4,794
4,617
4,828 | 7, 269
6, 730
6, 554
4, 943
4, 648 | 3,617
2,693
1,876
4,470
3,365 | 3, 224
2, 875
2, 740
2, 829
2, 508 | 4,791
4,553
4,517
3,664
3,096 | 4,595
3,819
5,783
9,142
10,347 | 2,929
2,669
2,816
3,771
2,808 | | 26
27
28
29
30 | 1,837
1,720
1,692
1,707 | 947
1,611
978
132
2,956 | 953
149
2,069
2,031
1,967
2,053 | 6, 287
5, 649
5, 250
2, 991
3, 432
2, 813 | 26, 300
39, 200
27, 054 | 5, 428
5, 691
5, 313
6, 100
5, 451
5, 059 | 6,260
6,643
7,441
6,687
6,068 | 3,158
3,209
3,087
2,007
1,587
2,174 | 1,542
408
2,570
2,539
2,341 | 4,603
4,420
5,168
6,085
6,650
6,200 | 8, 260
7, 440
5, 793
4, 592
5, 286
4, 470 | 1,960
4,289
3,121
2,870
2,889 | Note.—The above table shows the actual flow at Lawrence; not corrected for water wasted by the Metropolitan Water and Sewerage Board. Weekly discharge, in second-feet, of Merrimack River at Lawrence, Mass., for the year ending Sept. 30, 1915. [Weeks arranged in order of dryness.] | W eek
ending
Sun-
day— | Measured
at Law-
rence
(total
drainage
area,
4,663
square
miles). | Wasting into Merrimack from diverted drainage basins (211 square miles). | From net
drainage
area of
4,452
square
miles. | Per
square
mile of
net
drainage
area. | Week
ending
Sun-
day— | Measured
at Law-
rence
(total
drainage
area,
4,663
square
miles). | Wasting into Merrimack from diverted drainage basins (211 square miles). | From net
drainage
area of
4,452
square
miles. | Per
square
mile of
net
drainage
area. | |--|--|--|---|--|---|---
--|--|--| | Oct. 18 4 Nov. 15 Oct. 11 Nov. 8 1 Dec. 27 Oct. 25 Jan. 3 Nov. 29 June 20 Nov. 22 June 13 Dec. 26 6 13 June 27 Sept. 19 12 26 Jan. 10 May 30 Feb. 7 May 23 Jan. 17 | 1, 145
1, 348
1, 372
1, 407
1, 407
1, 469
1, 778
1, 891
1, 778
1, 891
2, 203
2, 203
2, 204
2, 205
2, 205
2, 304
2, 304
2, 305
2, 308
2, 308
2, 308
2, 308
2, 308
2, 308
2, 308
2, 308
2, 308
3, 308
2, 308
3, | 7 8 29 8 8 26 110 30 8 28 8 27 110 31 12 29 31 11 12 19 66 61 150 21 145 5 | 1, 138 1, 340 1, 343 1, 367 1, 381 1, 398 1, 422 1, 461 1, 751 1, 751 1, 780 1, 887 1, 919 2, 052 2, 174 2, 237 2, 295 2, 495 2, 540 2, 707 2, 786 2, 806 2, 967 3, 212 3, 632 3, 752 | 0. 256 301 302 307 310 311 319 328 353 333 422 424 431 461 488 488 5502 5515 600 666 630 666 721 816 | July 4 Feb. 14 July 25 Mar. 21 Apr. 4 May 16 Jan. 31 Mar. 28 Aug. 11 Apr. 11 Apr. 11 Apr. 12 Aug. 20 May 2 Aug. 20 May 2 Aug. 29 July 18 Jan. 24 Mar. 7 Aug. 15 8 Apr. 18 Apr. 18 | 4, 094
4, 250
4, 535
4, 677
7, 784
5, 051
5, 109
5, 170
6, 038
6, 544
6, 820
7, 301
7, 377
9, 701
11, 318
11, 704
13, 185
13, 896
14, 485 | 105
196
511
33
27
20
153
30
45
70
43
22
264
43
33
48
35
76
341
147
111
1245
14
167
258 | 3, 989 4, 054 4, 484 4, 644 4, 757 5, 031 4, 956 5, 140 5, 449 5, 968 6, 536 6, 761 7, 268 7, 289 7, 710 9, 115 9, 360 11, 171 11, 573 12, 940 13, 882 14, 471 17, 227 | 0. 896 | | Sept. 5 | 4,013 | 24 | 3,989 | .896 | Year. | 4,997 | 66 | 4,931 | . 1.108 | Note,—Estimates of discharge wasted from diverted drainage area based on data furnished by the Metropolitan Water and Sewage Board of Boston. Monthly discharge of Merrimack River at Lawrence, Mass., for the year ending Sept. 30, 1915. | | Me | an discharge | in second-fe | et. | Rur | ı-off. | | |----------|--|---|--|--|--|--|---| | Month. | Measured
at Law-
rence
(total
drainage
area, 4,663
square
miles). | Wasting into Merri- mack from diverted 'drainage basins (211 square miles). | From net
drainage
area of
4,452
square
miles. | Per square
mile of net
drainage
area. | Depth in inches on drainage area. | Per cent of rainfall. | Rainfall in
inches. | | October | 1,614
1,976
4,972
7,974
6,678
7,987
5,039
2,189 | 8
28
31
162
218
65
26
25
10
98
113 | 1, 350
1, 586
1, 945
4, 810
7, 756
6, 613
7, 961
5, 014
2, 179
8, 060
9, 190
2, 918 | 0.303
.356
.437
1.080
1.742
1.485
1.788
1.126
.489
1.810
2.064 | 0.349
.397
.504
1.245
1.814
1.712
1.995
1.298
.546
2.087
2.379 | 23. 7
15. 3
16. 9
25. 1. 0
2, 140. 0
89. 5
81. 6
22. 7
21. 6
38. 9
55. 4 | 1. 47
2. 60
2. 99
4. 96
3. 56
3. 56
2. 23
1. 59
2. 41
9. 62
6. 12 | | The year | 5,015 | 67 | 4, 948 | 1.110 | 15.057 | 38.7 | 38.95 | Note.—The monthly discharge in second-feet per square mile and the run-off in depth in inches, shown by the table, do not represent the natural flow from the basin because of artificial storage. The yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. SOUTH BRANCH OF NASHUA RIVER BASIN (WACHUSETT DRAINAGE BASIN) NEAR CLINTON, WORCESTER COUNTY, MASS. Drainage area.—The area of the basin has been artificially changed at times in connection with the water-supply systems of the Metropolitan district. From 1896 to 1907, 119 square miles; 1908 to 1913, 118.19 square miles; 1914 to 1915, 108.84 square miles. RECORDS AVAILABLE.—July, 1896, to September, 1915. DETERMINATION OF DISCHARGE.—South Branch of Nashua River has been utilized in the water-supply development for the Metropolitan district of Boston. The flow is affected by storage in Wachusett reservoir and several ponds. Investigations of the water supply have been made by the Metropolitan Water and Sewerage Board since July, 1896. Since 1897 the estimates of discharge have been corrected for gain or loss in the reservoir and ponds, so that the record shows approximately the natural flow of the stream. The yield per square mile is the yield of the drainage area including the water surfaces. For the years 1897 to 1902, inclusive, the water surface amounted to 2.2 per cent of the total area; 1903, 2.4 per cent; 1904, 3.6 per cent; 1905, 4.1 per cent; 1906, 5.1 per cent; 1907, 6 per cent; 1908–1915, 7 per cent. COOPERATION.—Complete record for the calendar years furnished by the Metropolitan Water and Sewerage Board of Boston and changed to the climatic year by engineers of the Geological Survey. Yield and rainfall in South Branch of Nashua River basin (Wachusett drainage area) near Clinton, Mass., for the year ending Sept. 30, 1915. | | | Yield per se | d per square mile. Run-off. | | | | |---|--|---|--|--|--|--| | Month. | Total yield
(million
gallons). | Million
gallons
per day. | Second-
feet. | Depth on
drainage
area
(inches). | Per cent of rainfall. | Rainfall (inches). | | October November December January February March April May June June July July August | 687.9
1,256.6
6,956.9
5,975.4
1,930.2
3,024.5
1,534.2
743.8 | 0.136
-211
.372
2.062
1.961
.572
-926
.455
-228
1.083
1.657 | 0.211
.326
.576
3.190
3.034
.885
1.443
.704
.353
1.676
2.564 | 0. 243
. 364
. 664
3. 678
3. 159
1. 020
1. 599
. 811
. 393
1. 932
2. 956 | 12. 9
12. 3
17. 1
58. 3
95. 3
1,700. 6
88. 9
48. 5
12. 4
22. 4
42. 8 | 1. 88
2. 97
3. 89
6. 313
3. 315
- 060
1. 798
1. 673
3. 1/5
8. 605
6. 900 | | September | 515.5 | . 158 | . 244 | . 272 | 17.8 | 1. 533 | | The year | 32,329.2 | .814 | 1. 260 | 17. 091 | 40.6 | 42. 112 | Summary of yield and rainfall in South Branch of Nashua River basin (Wachusett drainage area) near Clinton, Mass., for the years ending Sept. 30, 1897-1915. | [Drainage area. | 100 04 | CO11070 | miles | αī | |-----------------|--------|---------|-------|----| | т глипиче игеи. | LUA.74 | SOUBLE | HIHAS | | | ,,, | | Yield per s | quare mile. | Rur | ı-off. | | |---|--|--|---|---|---|--| | Month. | Total yield
(million
gallons). | Million
gallons
per day. | Second-
feet. | Depth on
drainage
area
(inches). | Per cent of
rainfall. | Rainfall
(inches). | | 1897–1915. October November December January February March April May June July August September The year | 48,056.5
74,064.9
79,014.2
80,831.7
165,840.7
131,084.7
75,080.0
43,426.4
26,323.5
28,114.8
20,367.1 | 0. 525
.775
1. 155
1. 233
1. 388
2. 587
2. 113
1. 171
.700
.411
.439
.328 | 0. 812
1. 199
1. 787
1. 907
2. 148
4. 002
3. 268
1. 812
1. 083
635
678
508 | 0. 936
1. 338
2. 060
2. 198
2. 249
4. 614
3. 648
2. 089
1. 208
732
782
567 | 26. 9
39. 5
50. 4
58. 2
60. 8
111. 1
95. 5
62. 2
34. 2
17. 6
18. 1
16. 2 | 3. 483
3. 388
4. 086
3. 779
3. 702
4. 153
3. 821
3. 360
3. 533
4. 165
4. 316
3. 494 | a Although the drainage area has been changed at different times, quantities in this table have been reduced to correspond with
the present drainage area. SUDBURY RIVER AND LAKE COCHITUATE BASINS NEAR FRAMINGHAM AND COCHITUATE, MIDDLESEX COUNTY, MASS. Drainage area.—The areas of Sudbury River and Lake Cochituate basins have been artificially changed at times in connection with the water-supply systems of the Metropolitan district. Area of Sudbury basin from 1875 to 1878, inclusive, 77.8 square miles; 1879–80, 78.2 square miles; 1881–1915, 75.2 square miles; area of Cochituate basin from 1863 to 1909, inclusive, 18.87 square miles; 1910, 17.8 square miles; 1911 to 1915, 17.58 square miles. RECORDS AVAILABLE.—Sudbury River basin, January, 1875, to September, 1915; Lake Cochituate basin, January, 1863, to September, 1915. Sudbury River and Lake Cochituate have been studied by the engineers of the city of Boston, the State board of health of Massachusetts, and the Metropolitan Water and Sewerage Board; records of rainfall have been kept in the Sudbury basin since 1875 and in the Cochituate basin since 1852, but Cochituate records prior to 1872 are of doubtful accuracy. REGULATION.—The greater part of the flow from these basins is controlled by storage reservoirs constructed by the city of Boston and the Metropolitan Water and Sewerage Board. Lake Cochituate, which drains into Sudbury River a short distance below Framingham, is controlled as a storage reservoir by the Metropolitan Water Works. In the Sudbury River basin the water surfaces exposed to evaporation have been increased from time to time by the construction of additional storage reservoirs. From 1875 to 1878, inclusive, the water surface amounted to 1.9 per cent of the total area; from 1879 to 1884, to 3 per cent; 1885 to 1893, to 3.4 per cent; 1894 to 1897, to 3.9 per cent; 1898 and subsequent years, 6.5 per cent. DETERMINATION OF DISCHARGE.—In determining the run-off of the Sudbury and Cochituate drainage basins the water diverted for the municipal supply of Framingham, Natick, and Westboro, which discharge their sewage outside the basins, is taken into consideration; the results, however, are probably less accurate since the sewerage diversion works were constructed. The public water and sewerage works were installed in these towns as follows: Dates of installation of water and sewerage works in Framingham, Natick, and Westboro. | Town. | Water supply. | Sewerage
works. | |----------------------------|----------------------|----------------------| | Framingham Natick Westboro | 1885
1874
1879 | 1889
1896
1892 | Water from the Wachusett drainage basin passes into the reservoirs in the Sudbury basin and must be measured to determine the yield of the Sudbury basin; the accuracy of the estimates of the Sudbury water supply during months of low yield in years subsequent to 1897 is impaired by the errors unavoidable in the measurement of large quantities of water. COOPERATION.—Complete records for calendar years furnished by the Metropolitan Water and Sewerage Board of Boston; changed to the climatic year by engineers of the Geological Survey. Yield and rainfall in Sudbury River basin near Framingham, Mass., for the year ending Sept. 30, 1915. [Drainage area, 75.2 square miles.] | | , | Yield per s | quare mile. | Rur | ı-off. | | |--|--|---|--|--|--|--| | Month. | Total yield
(million
gallons). | Million
gallons
per day. | Second-
feet. | Depth on
drainage
area
(inches). | Per cent of rainfall. | Rainfall
(inches). | | October November December December January February March April May June July August September | 219. 8
582. 6
3,797. 4
3,937. 1
1,383. 4
1,330. 1
594. 5
227. 9 | -0.059 -097 -250 1.629 1.870 -593 -590 -255 -101 1,045 1.168 -038 | -0.091
.151
.387
2.520
2.893
.918
.912
.395
.156
1.617
1.808 | -0.105
.168
.446
2.906
3.013
1.059
1.018
.455
.174
1.865
2.084 | -6.6
6.7
12.9
44.7
84.1
2,116.9
41.0
26.1
4.8
23.0
35.5
6.1 | 1. 60
2. 53
3. 46
6. 508
3. 583
. 050
2. 483
3. 653
8. 125
5. 870
1. 095 | | The year , | 17, 182. 5 | . 626 | . 969 | 13. 149 | 32.3 | 40.700 | Summary of yield and rainfall in Sudbury River basin near Framingham, Mass., for the years ending Sept. 30, 1876-1915. [Drainage area, 75.2 a square miles.] | | | Yield per s | quare mile. | Rur | Run-off. | | | |---|---|--|---|--|--|--|--| | Month. | Total yield
(million
gallons). | Million
gallons
per day. | Second-
feet. | Dépth on
drainage
area
(inches). | Per cent of rainfall. | Rainfall
(inches). | | | October November December January February March April May June July August September | 143, 355. 2
257, 468. 6
175, 882. 2 | 0. 428
. 762
. 976
1. 223
1. 687
2. 761
1. 949
1. 052
. 457
. 172
. 244
. 221 | 0. 659
1. 179
1. 510
1. 892
2. 610
4. 272
3. 016
1. 628
.707
. 266
. 378
. 342 | 0.760
1.315
1.741
2.181
2.740
4.925
3.365
1.877
.788
.307
.436 | 19. 7
34. 7
45. 7
52. 4
66. 4
113. 8
95. 4
27. 2
8. 4
11. 1 | 3.86
3.79
3.81
4.16
4.13
4.32
3.53
3.27
2.90
3.65
3.91
3.33 | | | The year | 1, 088, 218. 8 | . 991 | 1. 583 | 20.818 | 46.6 | 44.66 | | a The drainage area has been changed at different times, but quantities in this table have been reduced to correspond with the present drainage area. Yield and rainfall in Lake Cochituate basin near Cochituate, Mass., for the year ending Sept. 30, 1915. [Drainage area, 17.58 square miles.] | · | | Yield per s | quare mile. | Rur | ı-off. | | |---|---|---|---|--|--|--| | Month. | Total yield
(million
gallons). | Million
gallons
per day. | Second-
feet. | Depth on
drainage
area
(inches). | Per cent of rainfall. | Rainfall (inches). | | October November December January February March April May June July August September | 108. 7
191. 1
1,012. 3
1,084. 3
349. 5
306. 3
123. 8
47. 9
571. 5
565. 4 | 0.019
.195
.351
1.857
2.203
.641
.581
.227
.091
1.049
1.037 | 0.030
.301
.543
2.874
3.408
.992
.899
.351
.141
1.623
1.605 | 0.03
.35
.63
3.314
3.549
1.144
1.003
.405
.157
1.871
1.851 | 2. 0
14. 5
18. 5
50. 4
91. 5
1, 439. 0
35. 6
25. 5
4
2. 2
3. 2 | 1.69
2.45
3.38
6.57
3.88
.01
2.82
1.59
3.51
8.38
5.72
.88 | | The year | 4, 422. 4 | . 689 | .1.066 | 14. 471 | 35.4 | 40.88 | Summary of yield and rainfall in Lake Cochituate basin near Cochituate, Mass., for the years ending Sept. 30, 1864-1915. [Drainage area, 17.58 a square miles.] | | | Yield per s | quare mile. | Rui | | | |---|---|---|--|--|---|--| | Month. | Total yield
(million
gallons). | Million
gallons
per day. | Second-
feet. | Depth on
drainage
area
(inches). | Per cent of rainfall. | Rainfall (inches). | | October November December January February March April May June July August September | 20, 707. 9
25, 707. 7
31, 422. 3
39, 008. 1
60, 787. 5
45, 181 7
26, 889. 0 | 0. 530
. 755
. 907
1. 109
1. 511
2. 145
1. 647
. 949
. 439
. 254
. 385
. 394 | 0.819
1.171
1.407
1.716
2.338
3.319
2.548
1.468
679
393
.596 | 0. 95
1. 30
1. 62
1. 98
2. 45
3. 83
2. 84
1. 69
.
76
. 45
. 69
. 68 | 23. 1
32. 8
45. 3
50. 4
62. 8
89. 3
81. 9
47. 2
25. 7
11. 9
16. 7 | 4.09
3.97
3.57
3.93
3.91
4.29
3.47
3.58
2.96
3.77
4.14 | | The year | | .915 | 1.416 | 19. 24 | 42.6 | 45. 23 | a The drainage area has been changed at different times, but quantities in this table have been reduced to correspond with the present drainage area. ## BLACKSTONE RIVER BASIN. BLACKSTONE RIVER AT ALBION, R. I. LOCATION.—At the dam of the Valley Falls Co. in Albion, Providence County. Drainage area.—433 square miles. RECORDS AVAILABLE.—October 1, 1914, to September 30, 1915. Gage.—Staff gage on the pond 25 feet above the dam, staff gage in the canal near entrance to the wheels, and staff gage in the lower tailrace; read five times a day at 6.15, 9 and 11.30 a. m., 3 and 5.30 p. m. Water-stage recorder installed on the pond 40 feet above the dam August 3, 1915. DISCHARGE MEASUREMENTS.—Made from highway bridge, from temporary footbridges across canals, or by wading. COMPUTATION OF DISCHARGE.—Flow over dam determined from rating curve based on current meter measurements; discharge through wheels determined from measurements of flow in canals. Records are kept of wheel operations which are nearly always at full-gate openings during working hours. Variations in load are carried by an auxiliary steam plant. WINTER FLOW.—Discharge relation not seriously affected by ice. REGULATION.—At ordinary stages the flow is practically all controlled by the power plants along the river and is held in storage by dams during the hours when the mills are not in operation. Accuracy.—A study is being made by means of continuous records of gage height to determine how closely the readings made five times a day during working hours represent the conditions during those periods, and to determine also the ratio between 10-hour and 24-hour flow. Monthly mean discharge only is published. COOPERATION.—Gage-height observations on staff gages are furnished by Mr. Arnold B. Chace, of the Valley Falls Co. Discharge measurements of Blackstone River and canals at Albion, R. I., during the year ending Sept. 30, 1915. | [Made | bу | Hardin | Thweatt.] | |-------|----|--------|-----------| |-------|----|--------|-----------| | Date. | Gage
height.a | Dis-
charge. | Date. | Gage
height.a | Dis-
charge. | Date. | Gage
height.a | Dis-
charge. | |---------------------|------------------|--|--------|------------------|-----------------|--------|------------------|-----------------| | Aug. 2 Do Aug. 3 Do | | Secft.
b 216
c 340
d 321
495 | Aug. 5 | | e 313 | Aug. 9 | | g 214 | a Pond gage above dam. b In tailrace No. 1; head on wheels 12.7 feet. c In tailrace No. 2; head on wheels 12.8 feet. d In tailrace No. 2; head on wheels 13.0 feet, e In tailrace No. 2; head on wheels 13.1 feet. f In tailrace No. 2; head on wheels 13.1 feet. f In tailrace No. 1; head on wheels 13.0 feet. Note.-Measurements indicate flow of river except as noted. Monthly discharge of Blackstone River at Albion, R. I., for the year ending Sept. 30, 1915. [Drainage area, 433 square miles.] | Month. | Discharge in second-feet. | | Run-off
(depth in | , | | arge in
d-feet. | Run-off
(depth in | |--|-------------------------------------|---|--|---|-------------------|---------------------------------------|---| | | Mean. | Per
square
mile. | inches on
drainage
area). | Month. | Mean. | Per
square
mile. | inches on
drainage
area). | | October November December January February March April | 296
253
1,090
1,570
771 | 0.843
.684
.584
2.52
3.63
1.78
1.31 | 0.97
.76
.67
2.90
3.78
2.05
1.46 | May June July August September The year | 465
637
168 | 0.785
.684
1.07
1.47
.388 | 0. 90
. 76
1. 23
1. 70
. 43 | # CONNECTICUT RIVER BASIN. #### CONNECTICUT RIVER AT ORFORD, N. H. LOCATION.—At covered highway bridge between Orford, Grafton County, N. H., and Fairlee, Vt., approximately 10 miles downstream (by river) from the mouth of Waits River. Drainage area.-3,100 square miles. RECORDS AVAILABLE.—August 6, 1900, to September 30, 1915. GAGE.—Chain attached to upstream side of bridge; an inclined staff gage is also used at certain stages. DISCHARGE MEASUREMENTS.—Open-water measurements made from cable. CHANNEL AND CONTROL.—Channel wide and deep, with gravelly bottom; control for low stages slightly shifting. Extremes of discharge.—Maximum stage recorded during year, 23.9 feet, at 6 p.m. February 26 (discharge, 35,200 second-feet); minimum discharge occurred on January 6 and February 2-6, stage discharge relation affected by ice (discharge, 730 second-feet). 1900–1915: Maximum stage recorded, 33.4 feet, at 12 noon March 28, 1913 (discharge, computed from extension of rating curve, 57,300 second-feet); minimum 24-hour discharge, 288 second-feet, September 28, 1908. WINTER FLOW.—Discharge relation seriously affected by ice, usually from December to March, but the relation is unusually constant during each period. REGULATION.—Flow not seriously affected by regulation. (See Accuracy.) Accuracy.—Rating curve well defined; records considered good. A special study by means of a temporarily installed water-stage recorder from September 15 to October 19, 1914, showed that although determinations for individual days might be slightly in error the mean discharge for this period as computed from two gage readings a day differed by less than 1 per cent from the discharges obtained from continuous record of gage height. Discharge measurements of Connecticut River at Orford, N. H., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by | Gage
height. | Dis-
charge. | |--|--|---|--|--|----------------|---------------------------------------|---| | Nov. 4
Dec. 23
24
Jan. 15
Feb. 9
25 | R. S. Barnes
C. S. De Golyer
R. S. Barnes
dodododododododo. | Feet. 4.85 a4.92 a4.80 a5.73 a6.80 a13.00 | Secft.
2,120
1,040
1,040
1,410
1,600
9,190 | Feb. 26
Apr. 28
Sept. 17
17
18 | R. S. Barnesdo | Feet. 23. 52 13. 70 4. 16 4. 05 3. 82 | Secft.
34,500
14,100
1,390
1,440
1,330 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Connecticut River at Orford, N. H., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |----------------------------|---|--|--|--|--|--|--|--|--|--|--|---| | 1
2
3
4
5 | 2,030
2,110
1,790
1,640
1,640 | 1,500
1,790
1,950
2,290
2,560 | 4,610
4,380
4,840
6,100
-6,630 | 880
880
880
880
880 | 1,040
730
730
730
730
730 | 18,200
13,000
10,700
8,880
8,020 | 2,030
2,200
2,290
2,290
2,290
2,380 | 12,000
11,800
10,200
8,740
7,460 | 2,850
2,290
2,030
2,030
2,030
1,950 | 2,470
3,470
3,930
4,050
4,040 | 6,860
5,460
6,100
5,330
4,840 | 2,470
2,290
2,110
1,950
1,790 | | 6
7
8
9
10 | 1,500
1,290
1,040
1,100
1,360 | 3,050
3,490
3,710
3,710
3,270 | 5,840
4,840
4,050
3,490
3,160 | 730
1,100
3,050
3,930
3,050 | 730
880
1,430
1,430
1,290 | 7,320
6,900
6,760
6,360
5,960 | 2,560
2,750
2,950
4,040
5,840 | 6,760
5,840
5,700
6,630
6,630 | 1,950
1,640
1,360
1,500
1,430 | 4,160
4,380
4,380
11,800
21,900 | 3,930
3,490
8,050
3,600
5,080 | 1,790
1,640
1,430
1,430
1,500 | | 11
12
13
14
15 | 1.220 | 3,270
3,270
3,050
2,850
2,850 | 2,850
2,380
1,950
2,110
1,950 | 2,850
2,560
2,110
1,790
1,430 | 1,100
880
780
730
980 | 5,200
4,610
4,610
4,720
4,610 | 10,800
19,300
23,800
21,700
18,400 | 6,220
5,330
4,960
4,380
3,930 | 1,430
1,790
2,470
2,470
2,110 | 20,100
14,000
8,740
5,840
4,610 | 8,600
9,770
8,160
6,100
5,080 | 1,870
2,380
2,560
2,380
2,110 | | 16
17
18
19
20 | 1,360
1,430 | 3, 270
3, 820
4, 960
4, 610
3, 490 | 1,870
1,640
1,500
1,160
1,040 | 1,290
1,100
1,290
2,560
5,580 | 1,500
2,560
2,950
2,950
2,950 | 4,380
4,040
3,270
2,950
2,950 | 13,300
10,800
10,400
9,620
9,320 | 3,710
3,380
3,270
3,160
3,050 | 2,030
1,950
3,050
4,380
5,200 | 3,930
3,710
4,050
8,020
8,600 | 4,160
4,380
4,380
4,050
3,820 | 1,790
1,570
1,360
1,360
1,570 | | 21 | 3,490 | 3,380
2,850
3,270
3,050
2,850 |
1,100
1,100
1,100
1,040
930 | 5, 450
4, 050
3, 600
2, 950
2, 470 | 2,750
2,560
2,380
2,380
11,300 | 3, 270
3, 490
3, 270
3, 600
3, 930 | 9,030
8,160
7,180
6,100
6,630 | 2,950
2,950
3,050
2,850
2,470 | 4,380
3,710
3,050
2,650
2,470 | 6,900
6,360
7,180
6,900
5,580 | 3,160
2,850
3,930
5,960
6,100 | 1,790
2,750
5,080
5,840
4,840 | | 26 | 1,950
1,640
1,640
1,640 | 2,850
3,270
3,710
4,380
4,610 | 880
930
1,040
930
1,040
1,040 | 2,200
1,950
1,640
1,570
1,290
1,040 | 33,700
31,000
24,200 | 4,840
5,080
4,050
3,050
2,290
2,110 | 10,800
14,400
15,000
12,600
10,700 | 2,650
3,050
3,820
4,380
3,710
3,270 | 2,110
1,950
1,950
1,950
1,790 | 4,610
4,720
6,630
6,630
7,180
8,020 | 6,100
5,580
4,610
3,600
3,050
2,650 | 3,820
3,270
3,600
4,050
3,930 | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice Dec. 14, 1914, to Feb. 25, 1915; estimates for this period based on gage heights corrected for backwater by means of five discharge measurements and climatic data. Monthly discharge of Connecticut River at Orford, N. H., for the year ending Sept. 30, 1915. [Drainage area, 3,100 square miles.] | | D | Run-off | | | | | |---|---|--|--|---|---|--| | Month. | Maximum. | Minimum. | Mean. | Per-
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June July August September | 4,960
6,630
5,580
33,700
18,200
23,800
12,000
5,200
21,900
9,770 | 1, 040
1, 500
880
730
2, 110
2, 030
2, 470
1, 360
2, 470
2, 650
1, 360 | 1,910
3,230
2,500
2,160
4,910
5,560
9,250
5,110
2,400
7,000
4,950
2,540 | 0.616
1.04
.806
.697
1.58
1.79
2.98
1.65
.774
2.26
1.60 | 0.71
1.16
.93
.80
1.64
2.06
3.32
1.90
.86
2.61
1.84 | C.
B.
B.
B.
A.
A.
A.
A.
A. | | The year | 33,700 | 730 | 4, 290 | 1. 38 | 18.74 | | # CONNECTICUT RIVER AT SUNDERLAND, MASS. LOCATION.—At the five-span steel highway bridge at Sunderland, Franklin County, about 18 miles in a direct line and 24 miles by river above the dam at Holyoke. Deerfield River enters the Connecticut from the west about 8 miles above the station. Drainage area.—8,000 square miles. RECORDS AVAILABLE.—March 31, 1904, to September 30, 1915. From 1880 to 1899 records were obtained at Holyoke, Mass. GAGE.—Chain on highway bridge; read twice each day by V. Lawer. DISCHARGE MEASUREMENTS.-Made from the bridge. CHANNEL AND CONTROL.—Channel deep, with bottom of coarse gravel and alluvium. Control at low stages not well defined but practically permanent; at high stages it is evidently the crest of the dam at Holyoke. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 23.3 feet at 5 p.m. February 26 (discharge, 75,000 second-feet); minimum stage recorded, 0.6 foot at 5 p.m. November 8, 1914 (discharge, determined from extension of rating curve, 700 second-feet). 1904–1915, maximum stage: 30.7 feet during the night of March 28, 1913, determined by leveling from flood marks (discharge determined from extension of rating curve, 101,000 second-feet); minimum stage recorded, 0.6 foot September 28 and November 8, 1914 (discharge, determined from extension of rating curve, 700 second-feet). WINTER FLOW.—Discharge relation seriously affected by ice for several months each winter. Regulation.—Flow affected by the operation of various power plants above the station on the Connecticut itself and also the tributaries. Accuracy.—Record considered good. Discharge measurements of Connecticut River at Sunderland, Mass., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage Dis-
height. charge. | | Date. | Made by— | Gage
height. | Dis-
charge. | |---------------------------------------|----------|---|--|---------------------------------|--------------------------------|---|--| | Nov. 2
Dec. 22
Jan. 9
Feb. 7 | | Feet.
1. 10
a 3. 60
a 5. 88
a 6. 45 | Secft.
1,180
2,760
5,780
7,800 | Feb. 24
27
28
Sept. 25 | R. S. BarnesdodoHardin Thweatt | Feet.
a 7. 15
21. 27
17. 50
4. 48 | Secft.
9,040
68,600
55,100
7,050 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Connecticut River at Sunderland, Mass., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------|--|---|--|---|--|--|--|---|---|---|---|---| | 1 | 2,200
2,450
2,580
3,020
2,200 | 1,730
1,450
2,080
2,720
2,870 | 5,620
5,620
4,790
6,050
7,180 | 3,330
3,170
2,870
2,580
2,320 | 6,050
5,830
5,830 | 42,600
33,200
28,800
23,600
18,100 | 7,660
6,950
7,910 | 22,100
24,800
24,000
23,300
18,400 | 6,490
5,620
4,590
4,990
5,200 | 3,670
8,690
16,000
18,400
17,800 | 13,300
19,200
14,300
22,500
55,800 | 8,960
9,240
9,520
6,950
3,020 | | 6 | 3,500
3,500
2,720
2,450
2,870 | 2,720
2,720
1,290
1,510
2,720 | 6, 270
6, 270
7, 660
6, 050
4, 990 | 1,960
3,020
7,910
7,420
6,950 | 7,660 | 13,300
23,300
15,000
12,600
12,600 | 9,810
10,100
15,000 | 16,700
16,700
4,210
12,000
13,000 | 11,700
3,330 | | 36,900
36,900
25,200
18,100
19,200 | 2,450
2,450
5,830
5,410
5,620 | | 11 | 1,400
2,320
2,200
2,200 | 3,330
3,330
3,670
3,670
1,730 | 4,400
4,400
3,020
3,670
5,410 | 6,050
5,830
6,050
4,030
3,850 | 5,200 | 12,000
11,300
8,690 | 34,400
54,400
57,900
53,000
43,800 | 12,600
12,000
11,000
9,240
8,420 | 1,740
2,200 | 45,800
33,200
35,300
16,400
13,300 | 18,800
17,040
18,800
17,800
16,000 | 4,790
3,670
4,030
5,200
5,200 | | 16 | 2,450 | 2,320
6,270
6,720
6,950
4,990 | 7,420
6,270
5,200
4,400
3,330 | 2,580
7,180 | 12,000
18,100
18,800
15,700
12,600 | 8,160
8,690
8,960 | 37,700
32,400
26,400
24,000
22,500 | 7,420
8,420
8,420
6,490
8,420 | 4,400
5,200
6,270 | 15,300
14,700
16,000
9,240
13,300 | 12,000
13,300
12,300
10,400
7,910 | 4,400
4,400
4,400
3,170
2,870 | | 21 | 2,720
3,020
3,170
3,020
1,960 | 4,700
4,030
4,030
4,990
4,590 | 2,080
2,870
3,020
2,580
1,960 | 11,700
8,160
7,910 | 10,700
8,960
9,240
9,520
44,300 | 6,720
6,950
6,950 | 21,000
19,500
17,000
19,500
11,300 | 10, 100
8, 960
3, 330
4, 400
7, 180 | 6,950
8,420
5,830 | 20,300
16,400
14,000
14,700
14,000 | 7,180
7,910
24,000
14,700
16,700 | 4,400
7,180
7,180
6,490
7,186 | | 26 | 2,200
3,500
3,330
3,330
2,720
2,200 | 3,170
2,729
3,330
2,320
3,020 | 1,330
1,740
2,080
2,450
2,870
3,330 | 6,950 | 69,000 | 69,000
56,500
10,700
10,700 | 11,300
13,600
20,300
21,000
22,500 | 8,960
14,700
6,050
6,720
4,400
3,170 | 4,030 | 5,200
2,720
18,800
10,500
13,300
13,30 | 18,100
16,700
15,300
8,160
10,100
11,300 | 7,180
6,490
6,270
6,490
8,420 | Note.—Discharge determined from rating curve well defined between 1,500 and 70,000 second-feet. Discharge relation affected by ice Dec. 22 to Feb. 26; estimates for this period based on gage heights, discharge measurements, and weather records. Monthly discharge of Connecticut River at Sunderland, Mass., for the year ending Sept. 30, 1915. [Drainage area, 8,000 square miles.] | | D | ischarge in se | econd-feet. | | Run-off | | |---|---|--|--|---
---|---| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accuracy. | | October November December January February March April May June July August September | 6, 950
7, 660
13,000
69,000
42,600
57,900
24,800
8,420
64,900
55,800 | 1, 400
1, 290
1, 290
1, 960
4, 210
5, 620
6, 950
3, 170
1, 740
3, 670
7, 180
2, 450 | 2,510
3,390
4,330
5,960
15,700
13,200
22,100
11,000
4,400
17,600
5,690 | 0.314
.424
.541
.745
1.96
1.65
2.76
1.38
.550
2.36
2.20 | 0. 36
. 47
. 62
. 86
2. 04
1. 90
3. 08
1. 59
. 61
2. 72
2. 54
. 79 | B
B
C
C
B
B
A
A
A | | The year. | 69,000 | 1,290 | 10,400 | 1.30 | 17.58 | | PASSUMPSIC RIVER AT PIERCE'S MILLS, NEAR ST. JOHNSBURY, VT. LOCATION.—At suspension foot, idge just below dam of Pierce's mills, about 5 miles north of St. Johnsbury, Caleconia County. Sheldon Branch enters the Passumpsic about 2 miles above and Moose River 4 miles below the station. Drainage area.—237 square miles. RECORDS AVAILABLE.—May 26, 1909, to September 30, 1915. A station was maintained from June 29 to November 30, 1903, at St. Johnsbury Center. GAGE.—Low-water section a vertical staff bolted to ledge just above bridge; highwater section an inclined staff bolted to ledge just below bridge. DISCHARGE MEASUREMENTS.—Made from downstream side of footbridge or by wading. CHANNEL AND CONTROL.—Stream bed composed chiefly of gravel with ledge rock near right bank; control practically permanent. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 9.7 feet at 6 a. m. April 12 (discharge, determined from extension of rating curve, 4,560 second-feet; zero flow recorded on afternoon of June 28; water held back by mills. 1909–1915: Maximum stage, 14.8 feet on night of March 27, 1913, determined by leveling from flood marks (discharge not determined); minimum stage, zero flow at various times, when water was held back by mills. WINTER FLOW.—Discharge relation affected by ice. Station temporarily discontinued during the winter. REGULATION.—A small diurnal fluctuation is caused by the operation of Pierce's mills, just above station, and by other mills farther upstream. (See Accuracy.) Accuracy.—Rating curve fairly well defined, but many discharge measurements show a large percentage of error due to fluctuation in stage during the measurement. The effect of the diurnal fluctuation was studied by means of a portable water-stage recorder during August and September, 1914. Although the results obtained by reading the gage twice a day were found to be occasionally in error for individual days, the mean discharge for the period August 16 to September 11, as determined from these readings and from continuous record of gage height was found to be identical. The following discharge measurement was made by R. S. Barnes: April 26, 1915: Gage height, 4.34 feet; discharge, 1,140 second-feet. Daily discharge, in second-feet, of Passumpsic River at Pierce's mills, near St. Johnsbury, Vt., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |------------------------|-------------------------------------|---------------------------------|---------------------------------|------|--|---------------------------------------|--|-----------------------------------|--|--|---------------------------------| | 1 | 141
130
111
97
91 | 69
111
128
120
126 | 164
260
405
305
164 | | 750
600
530
420
405 | 189
230
230
202
290 | 600
600
500
420
390 | 164
152
152
130
122 | 107
164
141
141
189 | 375
640
420
290
275 | 230
202
176
176
152 | | 6
7
8
9
10 | 97
97
93
91
71 | 126
122
97
122
128 | 189
176
141
130
111 | | 390
340
340
305
290 | 340
245
460
710
870 | 340
305
530
500
405 | 101
113
113
120
117 | 202
130
320
2,540
750 | 230
202
530
750
1,310 | 152
152
710
600
305 | | 11 | 68
97
82
80
82 | 109
73
105
117
97 | 113
130
89
105 | | 260
245
245
230
230 | 1,820
4,000
1,360
910
750 | 340
290
275
260
230 | 120
320
176
152
128 | 405
260
216
176
176 | 600
360
320
460
320 | 202
176
176
189
176 | | 16 | 78
78
202
152
141 | 260
340
152
202
141 | | • | 189
176
176
202
202 | 670
670
600
560
530 | 216
216
260
230
260 | · 152
405
530
260
375 | 152
670
910
405
360 | 320
390
360
260
202 | 152
164
152
130
152 | | 21 | 141
130
113
97
105 | 130
141
189
164
141 | | | 176
164
189
- 290
340 | 460
390
375
360
1,000 | 216
230
216
189
176 | 260
176
152
130
141 | 260
230
560
275
202 | 176
202
1,170
710
670 | 420
640
290
216
189 | | 26 | 101
111
97
99
101
82 | 141
202
202
176
152 | | | 530
260
260
152
189
176 | 1,000
750
530
500
530 | 202
460
275
216
189
176 | 152
113
108
105
93 | 245
1,310
460
1,660
830
500 | 530
375
290
260
230
275 | 202
600
360
260
216 | Note.—Discharge determined from a rating curve well defined between 40 and 2,000 second-feet. Monthly discharge of Passumpsic River at Pierce's mills, near St. Johnsbury, Vt., for the year ending Sept. 30, 1915. [Drainage area, 237 square miles.] | | D | ischarge in | second-feet | · | Run-off | | |---------------------------------|------------|-------------------------|--------------------------|----------------------------------|--|----------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October
November
December | 340 | 68
69 | 105
146
a 145 | 0.443
.616
.612 | 0. 51
. 69
. 71 | B.
B.
C. | | February | 950
750 | 164 | a 170
a 270
298 | .717
1.14
1.26 | .83
1.19
1.45 | D.
D.
A. | | April | 600
530 | 189
176
93
107 | 718
313
178
482 | 3. 03
1. 32
. 751
2. 03 | 3.38
1.52
.84
2.34 | A.
A.
A. | | August | 1,310 | 176
130 | 436
264 | 1.84
1.11 | 2.12
1.24 | A.
A. | | The year | 4,000 | | 294 | 1.24 | 16.82 | | a Estimated by comparison with records in near-by drainage basins. #### WHITE RIVER AT WEST HARTFORD, VT. LOCATION.—About 500 feet above the highway bridge in the village of West Hartford, Windsor County, and 7 miles above the mouth of the river. Drainage area.—687 square miles. RECORDS AVAILABLE.—June 9 to September 30, 1915. GAGE.—Inclined staff on left bank; read twice a day by F. P. Morse. DISCHARGE MEASUREMENTS.—Made from cable 1,500 feet below the gage, or by wading. CHANNEL AND CONTROL.—Channel wide and of fairly uniform cross-section at measuring section; covered with gravel, sand, and clay. Control formed by rock ledge 100 feet below the gage, and well defined. EXTREMES OF DISCHARGE.—Maximum stage recorded, 8.1 feet at 6 a. m. July 9 (discharge, determined from extension of rating curve, 5,570 second-feet); minimum stage recorded, 2.82 feet at 6 p. m. September 20 (discharge 130 second-feet). The high water of March 27, 1913, reached a stage of 18.9 feet, as determined from reference mark on scale platform opposite gage (discharge not determined). REGULATION.—Of several power plants on main stream and tributaries above the station, the nearest is that of the Vermont Copper Co. at Sharon. This plant was not in operation in 1915 and the pondage above the dam equalized the flow, so that there was very little diurnal fluctuation at gaging station. ACCURACY.—Results good. Discharge measurements of White River at West Hartford Vt., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |-------------------|--------------|-----------------------|----------------------|----------|----------------|-----------------|-----------------| | June 9
Sept. 8 | C. H. Pierce | Feet.
3.11
3.30 | Secft.
230
260 | Sept. 13 | Hardin Thweatt | Feet.
3.08 | Secft.
233 | Daily discharge, in second-feet, of White River at West Hartford, Vt., for the year ending Sept. 30, 1915. | Day. | June. | July. | Aug. | Sept. | Day. | June. | July. | Aug. | Sept. | |-----------------------------|---------------------------------|---------------------------------------|-----------------------------------|---------------------------------|--------------------------|---------------------------------|-----------------------------------|-----------------------------------|---------------------------------| | 1
2
3 | | 410
1,450
1,270 | 515
715
1,020 | 435
385
315 | 16.
17.
18. | 295
385
625 | 655
810
777 | 542
542
570 | 210
210
195 | | 5 | | 1, 270
950 | 745
1,270 | 295
295 | 20 | 460
435 | 685
1,180 | 460
385 | 177
180 | | 6
7
8
9 | | 1,100
745
950
4,280
1,960 | 1,020
915
715
715
777 | 240
275
337
410
337 | 21.
22.
23.
24. | 435
337
275
240
240 |
845
810
1,360
915
715 | 337
385
1,180
985
950 | 275
487
337
257
240 | | 11
12
13
14
15. | 240
410
410
295
275 | 1,180
915
777
845
845 | 655
542
570
597
487 | 257
225
225
240
225 | 26 | 225
180
240
225
195 | 715
880
685
915
810 | 777
597
487
435
460 | 180
295
295
257
210 | NOTE.—Discharge determined from a fairly well defined rating curve. Several discharge measurements made subsequent to September 30 were used in determining the rating curve. Monthly discharge of White River at West Hartford, Vt., for the year ending Sept. 30, 1915. ## [Drainage area, 687 square miles.] | | , р | | Run-off
(depth in | | | | |------------------------------------|------------------------------|--------------------------|----------------------------|-----------------------------------|---------------------------------|----------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | inches on
drainage
area). | Accu-
racy. | | June 9-30. July . August September | 625
4,280
1,270
487 | 180
410
337
177 | 312
1,040
671
277 | 0. 454
1. 51
. 977
. 403 | 0.37
1.74
1.13
.45 | B.
B.
B.
B. | ## MILLERS RIVER AT ERVING, MASS. LOCATION.—At downstream end of chair factory at Erving, Franklin County, about 7 miles above the confluence of Millers River with Connecticut River and below all important tributaries. DRAINAGE AREA. -372 square miles. RECORDS AVAILABLE.—August 1, 1914, to September 30, 1915. Gage.—Staff gage attached to factory August 1, 1914, to June 30, 1915; water stage recorder July 1 to September 30, 1915. DISCHARGE MEASUREMENTS.—Made from cable or by wading. CHANNEL AND CONTROL.—Bed is coarse gravel and boulders; control permanent. EXTREMES OF STAGE.—Maximum stage recorded, 5.6 feet at 4 p. m. February 25, 1915 (discharge, 5,160 second-feet); i minimum stage recorded, 0.90 foot at 8a. m. November 8, no flow, as water was being stored farther upstream. WINTER FLOW.—Discharge relation affected by ice. REGULATION.—The operation of power plants at Athol, Orange, Wendell, and Erving affect the flow to such an extent that mean daily discharge can not be determined from two gage readings a day. Accuracy.—Well-defined curve has been determined by means of measurements made subsequent to September 30, 1915. Records after July 1, 1915, are excellent; prior to that date fair. ¹ Supersedes value published in U. S. Geol. Survey Water Supply Paper 415, p. 84. Discharge measurements of Millers River at Erving, Mass., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |--------------------|--------------------------------|-----------------|----------------------|----------|----------------|-----------------|-----------------| | Nov. 24
Aug. 18 | R. S. Barnes
Hardin Thweatt | | Secft.
192
643 | Sept. 22 | Hardin Thweatt | Feet.
2.33 | Secft.
404 | Twice-daily discharge, in second-feet, of Millers River at Erving, Mass., for the year ending Sept. 30, 1915. | | Octo | ober. | Nove | mber. | Dece | mber. | Janı | ıary. | Febr | uary. | Ma | rch. | |---------------------------------|---------------------------------------|-----------------------------------|---------------------------------|--------------------------------|------|-------|------|---------|---|---------------------------------------|--|--| | Day. | А.М. | P. M . | А.М. | Р.М. | А.М. | Р. М. | А.М. | Р. М. | А.М. | Р. М. | А.М. | P. M . | | 1 | 166
205
202
a 4
153 | 124
124
69
(b)
127 | a 35
83
74
213
101 | (b)
35
209
46
85 | | | | | | | 1,060
1,290
1,310
1,510
836 | 1,230
1,160
788
804
644 | | 6 | 147
144
157
157
136 | 94
98
150
85
141 | 220
205
a 0
89
228 | 54
72
(b)
150
69 | | | | | |
 | 788
a 588
932
600
612 | 630
(b)
630
618
612 | | 11 | 98
232
150
160 | (b)
30
74
78
76 | 236
52
224
157
a 4 | 76
76
58
124
(b) | | | | | | | 612
624
576
a 385
558 | 624
570
445
(b)
355 | | 16 | 213
220
a 22
228
228 | 72
83
(b)
153
150 | 144
220
141
213
150 | 160
44
60
72
83 | | | | | 1,540
1,360
1,370
1,260
960 | 1,330
1,300
1,090
923
812 | 415
360
335
468
504 | 492
486
612
528
305 | | 21.
22.
23.
24.
25. | 213
252
224
224
a 11 | 157
124
157
133
(b) | 147
a 7
150
213
220 | 35
(b)
220
39
41 | | | | | * 748
788
812
869
3,010 | (b)
637
780
887
4,850 | a 365
540
350
430
320 | (b)
385
450
445
504 | | 26 | 160
272
236
224
209
94 | 89
127
41
31
63
46 | 33
150
256
a 41
220 | (b)
138
58
(b)
202 | | | | | 4,480
3,320
a2,060 | 4,100
2,820
(b) | 534
456
a 435
504
315
425 | 564
430
(b)
400
335
272 | a Sunday. b Gage read in morning only; afternoon discharge taken as mean of discharge for preceding and following mornings in computing monthly discharge. Twice-daily discharge, in second-feet, of Millers River at Erving, Mass., for the year ending Sept. 30, 1915—Continued. | | Ap | ril. | Ma | ay. | Ju | ne. | Ju | ly. | Aug | gust. | Septe | mber. | |------|---|---------------------------------------|--|--|----------------------------------|---------------------------------|--|--|--|---|--|---------------------------------| | Day. | A.M. | Р.М. | A.M. | Р.М. | A. M. | Р.М. | А.М. | Р.М. | A.M. | Р.М. | А.М. | P.M. | | 1 | 708
305
435
a 198
492 | 582
355
456
(b)
435 | 1,510
a1,310
1,150
1,150
950 | 1,170
(b)
1,110
1,050
896 | 474
280
213
224
124 | 340
121
370
138
130 | 240
300
672
a 820
732 | 284
456
788
(b)
716 | a 450
651
665
564
3, 210 | (b)
534
708
2,730
2,910 | 400
252
320
280
a 153 | 522
420
405
355
(b) | | 6 | 370
335
630
804
878 | 658
588
686
732
679 | 860
740
588
4 618
672 | 828
748
686
(b)
658 | a 48
232
220
224
202 | (b)
360
53
114
96 | 570
546
390
2,730
2,560 | 606
606
540
2,820
2,560 | 2,640
2,390
a2,000
1,720
1,370 | 2,560
2,390
(b)
1,360
1,240 | 256
106
183
157
420 | 3
180
462
415
320 | | 11 | a 923
1,820
2,230
1,860
1,420 | (b)
2,230
2,080
1,510
923 | 686
665
651
492
400 | 606
686
658
462
410 | 228
121
a 52
236
260 | 180
111
(b)
350
220 | a2,080 $1,630$ $1,220$ 606 748 | (b)
1,410
950
780
764 | 1,140
1,620
923
980
a 844 | 1,130
828
950
960
(b) | 173
a 173
276
213
248 | 252
(b)
268
345
365 | | 16 | 1,190
1,020
4 716
679
570 | 1,100
780
(b)
665
708 | a 330
564
350
462
325 | (b)
450
430
480
480 | 240
228
240
127
a 60 | 153
205
202
183
(b) | 658
430
a 205
335
330 | 748
658
(b)
510
492 | 724
624
564
355
350 | 740
732
724
724
679 | 205
252
260
a 41
232 | 445
345
252
(b)
370 | | 21 | 612
612
588
570
a 300 | 672
637
594
700
(b) | 236
187
a 209
486
276 | 370
445
(b)
430
510 | 410
228
224
252
240 | 360
325
425
160
213 | 256
516
612
582
a 335 | 300
546
672
546
(b) | 320
a 213
700
370
390 | 325
(b)
679
644
665 | 205
244
288
248
248
345 | 365
330
456
450
176 | | 26 | 492
606
612
400
570 | 510
630
450
450
732 | 280
280
268
202
a 180
180 | 300
335
445
440
(b)
480 | 144
a 53
220
236
244 | 194
(b)
325
170
248 | 345
498
335
395
564
564 | 340
600
552
606
630
606 | 380
400
380
a 240
474
310 | 630
576
582
(b)
296
498 | a 173
380
240
248
244 | (b)
292
202
40
224 | a Sunday. Daily discharge, in second-feet, of Millers River at Erving, Mass., for the year ending Sept. 30, 1915. [By water-stage recorder.] | Day. | July. | Aug. | Sept. | Ъау. | July. | Aug. | Sept. | |----------------|-----------------------------------|---|-----------------------------------|---------------------------------|--|--|---| | 1. 2. 3. 4 | 284
390
665
4 724
693 | a 468
445
588
1, 120
2, 730
2, 310 | 385
335
345
395
4 236 | 16.
17.
18.
19.
20. | 780
644
a 468
486
492
b 285 | 644
665
582
522
504 | 252
220
a 190
a b 135
b 200 | | 7.
8.
9. | 534 | 2, 150
a 1, 670
1, 430
1, 180 | 144
248
224
355 | 22
23
24
25 | 450
534
440
a 350 | a 340
558
498
510 | 220
232
260
127 | | 11 | 1,510 |
1,000
878
914
869
a 748 | 260
153
264
232
236 | 26 | 325
462
440
462
522
528 | 492
516
528
a 209
305
330 | a 166
244
213
98
187 | c Sunday. Note.—Discharge computed from a rating curve fairly well defined below 1,800 second-feet, several discharge measurements made subsequent to Sept. 30, 1915, being used to determine the curve. Determinations twice a day from observer's readings on staff gage and are given for July, August, and September, 1915, subsequent to the installation of water-stage recorder for the purpose of comparing the results obtained from two readings a day with those obtained from continuous record of gage height; the readings were made at about 8 a. m. and 4 p. m. Monthly discharge for period prior to July 1, 1915, determined by applying a reduction factor of 0.90 to means from the two readings a day, this factor being derived by a comparative study of results subsequent to installation of recorder. Discharge relation affected by ice at various times during December, 1914, and January and February, 1915. b Discharge estimated by comparison of twice-a-day readings. b Discharge estimated by comparison of twice-a-day readings. Monthly discharge of Millers River at Erving, Mass., for the year ending Sept. 30, 1915. #### [Drainage area, 372 square miles.] | • | D | ischarge in se | econd-feet. | | Run-off
(depth in | , | |---|-------------------------|------------------|--------------|---|--|-------------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June July Angust September The year | 2, 560
2, 730
395 | 284
209
98 | 652
1,010 | 0.320
.277
.222
1.75
2.72
1.87
1.39
.511
1.99
2.27
.618 | 0.37
.31
.26
2.02
2.83
1.64
2.09
1.60
.57
2.29
2.62
.69 | B. B. C. C. B. B. B. A. A. A. | Note.—The monthly discharge in second-feet per square mile and the run-off depth in inches shown by the table do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. ### DEERFIELD RIVER AT CHARLEMONT, MASS. Location.—One mile below the village of Charlemont, Franklin County. Drainage area.—362 square miles. RECORDS AVAILABLE.—June 19, 1913, to September 30, 1915. Gage.—Friez water-stage recorder on left bank, referred to datum by a hook gage inside the well; inclined staff gage for auxiliary readings. DISCHARGE MEASUREMENTS.—Made from cable or by wading. CHANNEL AND CONTROL.—Channel of coarse gravel and boulders; fairly uniform section; control practically permanent. EXTREMES OF DISCHARGE.—1913-1915: Maximum stage (water-stage recorder), 15.7 feet at 11 p. m. July 8 (discharge, computed from extension of rating curve, 45,000 second-feet); minimum stage (water-stage recorder), 1.35 feet at 6 p. m. November 3, 1914 (discharge, 23 second-feet). WINTER FLOW.—Discharge relation seriously affected by ice. REGULATION.—Summer flow largely regulated by a storage reservoir at Somerset, Vt. Several power plants above the station also cause diurnal fluctuation. Accuracy.—Rating curve well defined; results for open water period considered good. Discharge measurements of Deerfield River at Charlemont, Mass., during the year ending Sept. 30, 1915. | Date. | Made by- | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |--|--|--|------------------------------------|---|--------------|--|---| | Nov. 3a
- 25
Dec. 23
Jan. 14
18
Feb. 14
23 | C. H. Pierce. R. S. Barnes do C. H. Pierce. R. S. Barnes do do | Feet. 1.36 5 2.08 5 2.28 5 2.38 5 2.19 5 4.44 5 2.64 | Secft. 24.8 129 92 380 288 627 549 | May 28
June 19
July 17
Aug. 17
24
24
24 | C. H. Pierce | Feet. 2.00 1.97 2.14 2.12 3.38 3.23 3.11 | Secft. 240 217 285 258 1, 230 1, 120 1, 010 | ^{a Measurement made by wading 200 feet above gage. b Discharge relation affected by ice.} Daily discharge, in second-feet, of Deerfield River at Charlemont, Mass., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Atig. | Sept. | |----------------|-------------------|------------|------------|----------------|------------|--------------|----------------|--------------|------------|----------------|----------------|----------------| | | | | | | | | | | | | | | | 1 | 128
168 | 95
75 | 166
304 | 70
76 | 400
715 | 1,060
873 | 392
413 | 985
850 | 123
209 | 1,770 | 389
738 | 571
326 | | 3 | . 77 | 51 | 304 | 87 | 570 | 688 | 412 | 802 | 125 | 1,860
1,930 | 876 | 320
465 | | 4 | 51 | 84 | 277 | 76 | 535 | 601 | 383 | 753 | 245 | 1,440 | 7,020 | 453 | | 5 | 29. | 66 | 245 | 83 (| 400 | 626 | 416 | 651 | 243 | 1, 160 | 6,320 | 230 | | 6 | 36 | 45 | 179 | 76 | 465 | 632 | 465 | 579 | 213 | 1,230 | 2,330 | 233 | | 7.
8 | 42
81 | 79
70 | 79
175 | 1,250
1,300 | 790
870 | 592
560 | 649
885 | 474
479 | 232
256 | 758
11,400 | 1,910
1,280 | 360
578 | | 9 | 61 | 38 | 106 | 715 | 605 | 505 | 1,630 | 444 | 271 | 12,200 | 962 | 498 | | 9 | 52 | 81 | 79 | 535 | 400 | 500 | 2,440 | 472 | 340 | 2,710 | 825 | 493 | | 11 | 32 | 112 | 135 | 396 | 340 | 497 | 9,350 | 366 | 348 | 1,340 | 587 | 303 | | 12 | 31 | 70 | 147 | 364 | 570 | 428 | 8,270 | 305 | 278 | 929 | 503 | 140 | | 13 | 49
37 | 56
41 | 171
230 | 389
358 | 640
960 | 402
389 | 3,600
2,090 | 266
325 | 194
281 | 678
515 | 480
425 | 337
1,410 | | 13
14
15 | 45 | 157 | 158 | 250 | 435 | 426 | 1,780 | 290 | 320 | 460 | 370 | 802 | | 16
17 | 60 | 649 | 109 | 245 | 2,870 | 360 | 1,700 | 239 | 359 | 237 | 423 | 463 | | 17 | 137 | 889 | 94 | 245 | 1,420 | 424 | 1,700
1,670 | 203 | 237 | 293 | 400 | 511 | | 18 | 257 | 415
225 | 72 | 542 | 870 | 362 | 1,520 | 465 | 250
185 | 380
294 | 392 | 371
252 | | 19
20 | 136
328 | 166 | 74
81 | 5,210
3,140 | 750
605 | 324
335 | 1,390
1,360 | . 370
272 | 124 | 565 | 283
369 | 302 | | | - | 1 | | • | | | ' | | | | | | | 21
22 | 202
150 | 57
70 | 109
109 | 1,420
878 | 570 | 361
331 | 1,110 | 267
322 | 99
240 | 551
698 | 283
733 | 1,220
1,580 | | 23 | 102 | 103 | 97 | 629 | 535
640 | 364 | 844
717 | 318 | 108 | 580 | 2.620 | 1,580 | | 24 | 66 | 87 | 97 | 1, 250 | 1,050 | 457 | 596 | 186 | 104 | 500 | 1,140 | 626 | | 25 | 42 | 106 | 94 | 1,070 | 12, 100 | 619 | 486 | 328 | 152 | 327 | 1,250 | 383 | | 26 | 60 | 109 | 76 | 847 | 5,440 | 871 | 537 | 138 | 136 | 422 | 950 | 330 | | 27 | 99 | 230 | 43 | 598 | 2,250 | 612 | 459 | 263 | 145 | 1,770 | 641 | 727 | | 28
29 | 82
55 | 500
376 | 53
62 | 581
340 | 1,360 | 500
509 | 426
538 | 282
243 | 262
362 | 1,170
776 | 522
349 | 638
503 | | 30 | 54 | 201 | 76 | 196 | | 380 | 695 | 199 | 265 | 593 | 618 | 461 | | 31 | 66 | | 109 | 389 | | 365 | | 152 | 200 | 393 | 758 | 101 | | 1 | - 1 | |] | | | | | | | | | | Note.—Discharge determined from a well-defined rating curve by averaging the discharge for 12 two-hour periods each day, except for short period when water-stage recorder was not working properly. Discharge relation affected by ice Nov. 19, 1914, to Jan. 18, 1915, and Jan. 29 for beb. 23, 1915; estimates based on gage heights corrected for backwater by means of six discharge measurements and climatic data. Monthly discharge of Deerfield River at Charlemont, Mass., for the year ending Sept. 30, 1915. [Drainage area, 362 square miles.] | | Observed d | lischarge (sec | ond-feet). | Gain or
loss in
storage | | e without
cond-feet). | Run-off
(depth in
inches on
drainage
area). | | |---|--|---|--|--|--|---|---|--| | Month. | Maximum. | Minimum. | Mean. | at Som-
erset, Vt.
(millions
of cubic
feet). | | Per
square
mile. | | Accu-
racy. | | October November December January February March April May June July August September | 304
5,210
12,100
1,060
9,350
985
362
12,200
7,020
1,580 | 29
41
43
70
340
324
383
138
99
237
283
140 | 90. 8
177
133
761
1,400
515
1,570
396
224
1,610
1,190
541 | + 31.1
+ 84.8
+ 70.5
+ 254
+ 285
+ 72.7
+ 439
+ 147
- 253
+ 239
+ 225
- 206 |
102
210
159
856
1,520
542
1,740
451
126
1,700
1,270
462 | 0. 282
. 580
. 439
2. 36
4. 20
1. 50
4. 81
1. 25
. 348
4. 70
3. 51
1. 28 | 0.32
.65
.51
2.72
4.37
1.73
5.37
1.44
.39
5.42
4.05 | A. B. B. B. D. A. A. A. A. A. A. A. A. | | The year | 12,200 | 29 | 712 | +1,390 | 756 | 2.09 | 28. 40 | | Note.—The increase (+) or decrease (-) of water held in storage at Somerset, vt., during the month has been computed by engineers of the Geological Survey from data of storage increase or decrease furnished by the company operating the reservoir. ## WARE RIVER AT GIBBS CROSSING, MASS. LOCATION.—Between the highway bridge and the electric-railway bridge at the point known as Gibbs Crossing, about 3 miles below Ware, Hampshire County. Muddy Brook enters from right at Ware and Beaver Brook from right about 2½ miles below the station. Drainage area.—201 square miles. RECORDS AVAILABLE.—August 20, 1912, to September 30, 1915. GAGE.—Barrett & Lawrence water stage recorder on the right bank, referred to gage datum by a hook gage inside the well; an inclined staff gage is used for auxiliary readings. DISCHARGE MEASUREMENTS. - Made from the electric railway bridge or by wading. CHANNEL AND CONTROL.—Channel rough and subject to a growth of aquatic vegetation during the summer months. Control free from weeds and practically permanent. EXTREMES OF DISCHARGE.—Maximum stage during year (water-stage recorder): 5.48 feet at 1.45 a. m. February 26 (discharge, 2,560 second-feet); minimum stage (water-stage recorder): 1.20 feet at 1-11 a. m. October 26, 1914 (discharge, 5.0 second-feet). 1912-1915: Maximum open-water stage recorded, 5.9 feet March 2, 1914 (discharge, 2,770 second-feet); minimum stage recorded, 1.20 feet October 26, 1914 (discharge, 5.0 second-feet). WINTER FLOW.—Discharge relation seriously affected by ice. REGULATION.—Flow regulated by the operation of mills above the station, which causes diurnal fluctuation at low stages and low discharge on Sundays and holidays. Accuracy.—Rating curve well defined; results for open-water periods considered good. Discharge measurements of Ware River at Gibbs Crossing, Mass., during the year ending Sept. 30, 1915. ## [Made by R. S. Barnes.] | Date. | Gage
height. | Dis-
charge. | Date. | Gage
height. | Dis-
charge. | Date. | Gage
height. | Dis-
charge. | |--------|---------------------------------|-----------------------------|-----------------------------|-----------------|--------------------------------|------------------|-------------------------|----------------------| | Dec. 4 | Feet.
1.62
a1.80
a3.85 | Secft.
37.3
40
174 | Jan. 5
Jan. 6
Jan. 21 | a 3.50 | Secft.
42.5
147
1,120 | Feb. 5
Mar. 1 | Feet.
2. 54
3. 38 | Secft.
233
774 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Ware River at Gibbs Crossing, Mass., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------|----------------------------|----------------------------|-----------------------------------|--|-----------------------|---------------------------------------|---------------------------------|-------------------------------------|----------------------------|--|--|------------------------------| | | | | | | | | | | | | | | | 1 | 13 | 7.8 | 69 | 60 | 236 | 669 | 138 | 195 | 141 | 108 | 187 | 159 | | | 17 | 30 | 70 | 46 | 218 | 511 | 131 | 198 | 148 | 137 | 264 | 150 | | | 8.7 | 35 | 72 | 25 | 159 | 424 | 72 | 239 | 118 | 304 | 359 | 150 | | | 6 | 38 | 26 | 46 | 168 | 343 | 108 | 236 | 88 | 338 | 523 | 60 | | | 26 | 51 | 29 | 60 | 123 | 308 | 149 | 200 | 24 | 229 | 1,350 | 50 | | 6 | 27 | 20 | 26 | 76 | 200 | 282 | 188 | 217 | 17 | 238 | 1,370 | 140 | | | 50 | 17 | 72 | 244 | 420 | 241 | 232 | 176 | 56 | 222 | 1,340 | 136 | | | 12 | 17 | 68 | 284 | 438 | 281 | 235 | 191 | 59 | 179 | 975 | 130 | | | 20 | 61 | 66 | 99 | 329 | 284 | 252 | 219 | 76 | 555 | 750 | 119 | | | 18 | 46 | 73 | 57 | 248 | 236 | 273 | 226 | 90 | 714 | 571 | 105 | | 11 | 8. 8 | 31 | 47 | 46 | 168 | 237 | 263 | 222 | 89 | 443 | 480 | 25 | | | 9. 6 | 28 | 24 | 60 | 140 | 230 | 537 | 192 | 21 | 398 | 378 | 21 | | | 35 | 14 | 24 | 248 | 174 | 157 | 598 | 165 | 11 | 358 | 377 | 78 | | | 34 | 9.8 | 57 | 276 | 142 | 134 | 466 | 155 | 58 | 273 | 386 | 78 | | | 32 | 6.6 | 95 | 174 | 393 | 209 | 379 | 110 | 63 | 260 | 305 | 79 | | 16 | 36 | 45 | 89 | 125 | 1,240 | 238 | 324 | 109 | 72 | 209 | 342 | 80 | | | 22 | 56 | 68 | 120 | 956 | 169 | 290 | 207 | 68 | 118 | 314 | 81 | | | 57 | 47 | 60 | 1,280 | 660 | 169 | 212 | 121 | 62 | 112 | 267 | 24 | | | 82 | 43 | 47 | 2,370 | 529 | 163 | 232 | 120 | 21 | 149 | 217 | 19 | | | 66 | 24 | 53 | 1,640 | 420 | 99 | 269 | 115 | 16 | 240 | 210 | 81 | | 21 | 36 | 20 | 76 | 870 | 343 | 96 | 253 | 102 | 67 | 201 | 148 | 114 | | | 32 | 15 | 101 | 515 | 368 | 176 | 189 | 82 | 70 | 228 | 129 | 190 | | | 14 | 42 | 79 | 378 | 343 | 192 | 204 | 133 | 68 | 242 | 212 | 182 | | | 11 | 62 | 60 | 1,000 | 420 | 153 | 153 | 191 | 70 | 175 | 208 | 132 | | | 7. 3 | 69 | 35 | 790 | 1,660 | 145 | 132 | 192 | 73 | 116 | 248 | 75 | | 26 | 34
42
75
71
17 | 13
15
30
52
85 | 20
25
51
85
40
174 | 585
393
320
268
200
153 | 2,230
1,180
788 | 138
89
118
194
195
136 | 195
204
182
173
159 | 131
127
121
29
50
53 | 61
20
66
80
77 | 140
163
144
171
243
148 | 182
177
114
139
207
182 | 29
105
98
100
92 | Note.—Discharge determined from a well-defined rating curve by averaging the discharge of short periods throughout the day, the length of period varying from 1 to 6 hours. Discharge relation affected by ice Dec. 16, 1914, to Jan. 18, 1915, and Feb. 1-5, 1915; estimates based on gage heights corrected for backwater by means of four discharge measurements and climatic data. Monthly discharge of Ware River at Gibbs Crossing, Mass., for the year ending Sept. 30, 1915. [Drainage area, 201 square miles.] | | D | ischarge in s | econd-feet. | | Run-off | | |---|---|---|--|---|--|-------------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June July August September | 85
174
2,370
2,230
669
598
239
148
714
1,370 | 6. 0
6. 6
20
25
123
89
72
29
11
108
114 | 30. 0
34. 3
60. 7
413
525
226
240
156
65. 0
244
416
96. 1 | 0.149
.171
.302
2.05
2.61
1.12
1.19
.776
.323
1.21
2.07
.478 | 0.17
.19
.35
2.36
2.72
1.29
1.33
.89
.36
1.40
2.39 | A. C. C. B. A. A. A. A. A. A. | | The year | | 6.0 | 207 | 1.03 | 13,98 | | #### SWIFT RIVER AT WEST WARE, MASS. LOCATION.—Just below the timber dam opposite the West Ware station of the Boston & Albany Railroad, about 6 miles downstream from Enfield, Hampshire County. Drainage area.—186 square miles (revised). RECORDS AVAILABLE.—July 15, 1910, to September 30, 1915. GAGE.—Barrett & Lawrence water-stage recorder on left bank about 1,000 feet below the dam, referred to datum by a hook gage inside the well, since August 25, 1912; inclined staff for auxiliary readings; July 15, 1910, to August 25, 1912, chain gage attached to downstream side of footbridge about 400 feet below the dam. DISCHARGE MEASUREMENTS.—Made from cable about 50 feet above the present gage by wading. CHANNEL AND CONTROL.—Bed composed of gravel and alluvial deposits; some aquatic vegetation during summer months. Control practically permanent. EXTREMES OF DISCHARGE.—Maximum stage during the year, from water-stage recorder, 9.1 feet at 3 a. m. February 26 (discharge, determined from extension of rating curve, 2,240 second-feet); minimum stage, from water-stage recorder, 1.40 feet at 6.10 a. m. October 25, 1914 (discharge, 22 second-feet). 1910-1915: Maximum stage recorded February 26, 1915 (see preceding paragraph); minimum stage recorded, 1.36 feet September 22, 1914 (discharge, 22 second-feet). WINTER FLOW.—Discharge relation not seriously affected by ice. REGULATION.—The operation of mills at Enfield, 6 miles above the station, affects the distribution of flow at low and medium stages. This diurnal fluctuation is somewhat equalized by the pondage above the dam at West Ware, which has not been used for power development for several years and has only a slight effect when the mean daily discharge is over 200 second-feet. (See Water-Supply Paper 375, p. 132.) ACCURACY.—Records considered good. Discharge measurements of Swift River at West Ware, Mass., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |----------------------------------|---------------------|---|-----------------------------------|---------------------------|----------------------------------|-------------------------------|-----------------------------| | Dec. 4
20
Jan. 5
Feb. 5 | R. S. Barnesdododo. | Feet.
1, 80
a 1, 83
a 1,
90
a 2, 53 | Secft.
66
59.6
59
145 | Apr. 14
14
Sept. 30 | R. S. Barnesdo
Hardin Thweatt | Feet.
4.69
4.68
2.05 | Secft,
791
788
106 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Swift River at West Ware, Mass., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |------|------|------|------|-------|----------|------|------|------|-------|-------|-------|-------| | | | | | | <u> </u> | | | | | | | | | 1 | 34 | 38 | 59 | 47 | 143 | 895 | 156 | 389 | 101 | 136 | 376 | 180 | | 2 | 37 | 40 | 66 | 44 | 152 | 655 | 145 | 461 | 109 | 172 | 475 | 166 | | 3 | 35 | 41 | 67 | 36 | 150 | 520 | 132 | 420 | 109 | 280 | 640 | 154 | | 4 | 30 | 46 | 67 | 47 | 139 | 368 | 134 | 389 | 102 | 355 | 728 | 145 | | 5 | 38 | 52 | 67 | 54 | 136 | 342 | 150 | 342 | 95 | 360 | 1,610 | 141 | | 6 | 30 | 48 | 65 | 40 | 158 | 304 | 200 | 312 | 88 | 322 | 1,800 | 130 | | 7 | 34 | 46 | 64 | 359 | 241 | 292 | 239 | 282 | 74 | 335 | 1,760 | 121 | | 8 | 35 | 46 | 66 | 297 | 277 | 267 | 245 | 275 | 72 | 270 | 1,360 | 121 | | 9 | 34 | 53 | 67 | 325 | 270 | 267 | 255 | 275 | 78 | 565 | 1,020 | 121 | | 10 | 34 | 48 | 64 | 262 | 239 | 255 | 262 | 270 | 76 | 925 | 795 | 113 | | 11 | 31 | 45 | 64 | 176 | 217 | 243 | 317 | 257 | 68 | 848 | 610 | 106 | | 12 | 35 | 45 | 58 | 182 | 176 | 239 | 565 | 228 | 66 | 672 | 490 | 102 | | 13 | 32 | 44 | 58 | 272 | 145 | 217 | 865 | 208 | 62 | 535 | 444 | 98 | | 14 | 32 | 46 | 76 | 255 | 134 | 204 | 795 | 188 | 59 | 397 | 447 | 95 | | 15 | 33 | 44 | 62 | 225 | 210 | 184 | 655 | 172 | 56 | 320 | 417 | 100 | | 16 | 38 | 74 | 60 | 194 | 550 | 196 | 505 | 152 | 64 | 277 | 391 | 98 | | 17 | 55 | 81 | 60 | 180 | 655 | 187 | 404 | 149 | 71 | 215 | 347 | 113 | | 18 | 56 | 72 | 55 | 565 | 595 | 177 | 368 | 164 | 74 | 194 | 307 | 94 | | 19 | 59 | 70 | 53 | 985 | 505 | 168 | 335 | 164 | 72 | 188 | 267 | 88 | | 20 | 51 | 79 | 58 | 1,180 | 404 | 160 | 320 | 156 | 78 | 221 | 241 | 84 | | 21 | 47 | 72 | 53 | 895 | 356 | 143 | 297 | 145 | 78 | 267 | 215 | 121 | | 22 | 45 | 65 | 53 | 565 | 330 | 147 | 277 | 166 | 81 | 280 | 213 | 150 | | 23 | 43 | 60 | 61 | 434 | 325 | 166 | 260 | 174 | 86 | 272 | 241 | 139 | | 24 | 43 | 56 | 61 | 434 | 399 | 164 | 245 | 176 | 86 | 267 | 243 | 139 | | 25 | 42 | 64 | 45 | 407 | 1,490 | 162 | 234 | 184 | 77 | 272 | 260 | 136 | | 26 | 55 | 65 | 46 | 407 | 2,200 | 174 | 221 | 172 | 81 | 248 | 234 | 130 | | 27 | 48 | 67 | 46 | 342 | 1,800 | 162 | 230 | 162 | 79 | 248 | 213 | 125 | | 28 | 43 | 73 | 43 | 287 | 1,270 | 150 | 230 | 147 | 72 | 282 | 198 | 117 | | 29 | 44 | 67 | 42 | 232 | -, | 143 | 225 | 128 | 71 | 368 | . 188 | 109 | | 30 | 45 | 62 | 46 | 215 | | 162 | 239 | 118 | 71 | 391 | 186 | 95 | | 31 | 46 | | 48 | 170 | | 160 | | 106 | | 391 | 188 | l | | | , 20 | [, | | 2.0 | , | 200 | | 200 | | "" | 1 | | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice Dec. 16, 1914, to Jan. 20, 1915, and Jan. 30 to Feb. 24, 1915; estimates based on gage heights corrected for backwater by means of three discharge measurements and climatic data. Discharge interpolated Mar. 17-18. Monthly discharge of Swift River at West Ware, Mass., for the year ending Sept. 30, 1915. ' [Drainage area, 186 square miles.] | • | D | ischarge in se | econd-feet. | | Run-off | | |--|---|---|--|---|--|-------------------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June July August September The year | 76
1,180
2,200
895
865
461
109
925 | 30
38
42
36
134
143
132
106
56
136
84 | 40.8
57.0
58.1
326
488
254
317
224
78.5
351
545
121 | 0. 219
.306
.312
1. 75
2. 62
1. 37
1. 70
1. 20
.422
1. 89
2. 93
.651 | 0.25
.34
.36
2.02
2.73
1.58
1.90
1.38
.47
2.18
3.38
.73 | B. B. C. C. C. B. B. B. B. B. B. B. | QUABOAG RIVER AT WEST BRIMFIELD, MASS. LOCATION.—At the two-span highway bridge, in Hampden County, just west of the West Brimfield station of the Boston & Albany Railroad, about 3 miles below West Warren. Drainage area.—150 square miles. RECORDS AVAILABLE.—August 23, 1909, to September 30, 1915. GAGE.—Stevens water-stage recorder installed September 28, 1914, at the downstream end of center pier and referred to datum by a hook gage inside the well; August 19, 1912, to September 27, 1914, Barrett & Lawrence water-stage recorder; prior to August 19, 1912, a vertical staff on the upstream side of the right abutment of the bridge. All gages at the same datum. DISCHARGE MEASUREMENTS.—Made from the bridge or by wading. CHANNEL AND CONTROL.—Bed composed of bowlders, gravel, and alluvial deposits; control practically permanent. WINTER FLOW.—Discharge relation seriously affected by ice. EXTREMES OF DISCHARGE.—Maximum stage during the year, from water-stage recorder, 5.2 feet at 9.30 a. m. January 7 (discharge, determined by applying correction for effect of ice, which probably obstructed the channel to a small extent, 1,660 second-feet); minimum stage, from water-stage recorder, 1.61 feet at 6 a. m. October 9 and 1 a. m. October 11, 1914 (discharge, 10 second-feet). 1909–1915: Maximum open-water stage recorded, 4.9 feet March 1, 1910 (discharge, 1,660 second-feet); minimum stage recorded, 1.4 feet September 17–18, 1910 (discharge, 2.5 second-feet). REGULATION.—The operation of mills at West Warren causes a decided diurnal fluctuation discharge at the station. (See Water-Supply Paper 375, p. 132.) Accuracy.—Rating curve well defined; results for open-water period, obtained by continuous record of gage height, considered good. Discharge measurements of Quaboag River at West Brimfield, Mass., during the year ending Sept. 30, 1915. | Date. | Made by | Gage height. Discharge. Date. Made by | | Made by | Gage
height. | Dis-
charge. | | |--------------------|--------------|---|--------------------------------------|-----------------------------|--------------------------------|------------------------------------|-----------------------------| | Dec. 3 21 Jan. 4 6 | R. S. Barnes | Feet.
1.80
a 2.27
a 2.63
a 2.06 | Secft.
27.3
62
39.4
31.9 | Feb. 6
Mar. 5
Aug. 14 | R. S. Barnesdo. Hardin Thweatt | Feet.
a 3. 00
3. 12
2. 55 | Secft.
341
464
194 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Quaboag River at West Brimfield, Mass., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------------------|----------------------------------|----------------------------|----------------------------------|--|---------------------------------|---------------------------------------|--|-------------------------------------|----------------------------|-----------------------------------|------------------------------------|----------------------------| | 1 | 65 | 13 | 52 | 33 | 284 | 620 | 128 | 136 | 113 | 75 | 94 | 87 | | | 21 | 41 | 55 | 28 | 193 | 568 | 130 | 148 | 77 | 136 | 115 | 81 | | | 44 | 37 | 49 | 18 | 262 | 477 | 125 | 148 | 85 | 133 | 142 | 79 | | | 25 | 40 | 58 | 50 | 401 | 335 | 120 | 136 | 79 | 136 | 250 | 58 | | | 49 | 21 | 55 | 63 | 562 | 455 | 151 | 133 | 58 | 118 | 423 | 79 | | 6
7
8
9 | 44
37
31
27
24 | 28
25
18
43
40 | 34
71
40
46
46 | 101
1,000
935
763
729 | 401
396
375
375
311 | 417
380
345
306
284 | 163
176
176
176
190
193 | 130
123
136
145
136 | 73
98
59
63
63 | 120
94
118
254
211 | 330
302
284
288
279 | 77
83
69
61
75 | | 11 | 16 | 38 | 37 | 661 | 320 | 258 | 207 | 120 | 52 | 190 | 254 | 37 | | | 40 | 16 | 38 | 797 | 266 | 246 | 246 | 120 | 49 | 183 | 234 | 53 | | | 50 | 14 | 50 | 970 | 284 | 218 | 242 | 113 | 32 | 166 | 250 | 77 | | | 37 | 28 | 59 | 722 | 270 | 211 | 238 | 108 | 79 | 157 | 207 | 77 | | | 34 | 25 | 73 | 581 | 391 | 204 | 226 | 85 | 58 | 151 | 193 | 79 | | 16 | 28 | 59 | 125 | 562 | 633 | 186 | 211 | 96 | 56 | 139 | 176 | 89 | | | 29 | 56 | 142 | 525 | 562 | 186 | 207 | 120 | 56 | 110 | 157 | 77 | | | 21 | 49 | 113 | 1,020 | 507 | 169 | 190 | 98 | 65 | 103 | 139 | 50 | | | 67 | 41 | 79 | 709 | 483 | 163 | 183 | 87 | 55 | 113 | 123 | 49 | | | 41 | 52 | 40 | 647 | 439 | 160 | 169 | 81 | 56 | 110 | 128 | 65 | | 21 | 38 | 47 | 197 | 581 | 412 | 151 | 166 | 89 | 85 | 105 | 101 | 101 | | | 31 | 33 | 94 | 501 | 391 | 166 | 163 | 113 | 55 | 105 | 123 | 96 | | | 32 | 67 | 58 | 562 | 370 | 145 | 160 | 123 | 59 | 115 | 125 | 85 | | | 34 | 68 | 44 | 661 | 401 | 136 | 151 | 125 | 52 | 91 | 113 | 77 | | | 19 | 68 | 40 | 614 | 790 | 133 | 157 | 113 | 53 | 91 | 110 | 63 | | 26 | 30
41
40
26
26
21 | 68
69
61
47
67 | 35
33
31
33
30
33 | 555
507
461
407
302
293 | 756
640
661 | 128
77
120
123
115
110 | 160
142
148
139
142 | 110
105
89
87
103
94 | 44
49
77
52
49 | 103
75
71
96
98
77 |
110
94
81
96
103
85 | 69
81
65
61
69 | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice Dec. 11, 1914, to Jan. 20, 1915, and Jan. 31 to Feb. 17, 1915; estimates based on gage heights corrected for backwater by means of four discharge measurements and climatic data. Discharge interpolated Nov. 24–26. Monthly discharge of Quaboag River at West Brimfield, Mass., for the year ending Sept. 30, 1915. [Drainage area 150 square miles.] | , | D | Discharge in second-feet. | | | | | | | |--|---------------------------------|-----------------------------|---------------------------------------|--|--|----------------------------|--|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Acct | | | | October
November
December
Sanuary
Pebruary | 69
197
1,020 | 16
13
30
18 | 34. 5
42. 6
61. 0
528
433 | 0. 230
. 284
. 407
3. 52
2. 89 | 0. 27
. 32
. 47
4. 06
3. 01 | A.
A.
C.
C.
C. | | | | farch
April
fay
une
uly | 620
246
148
113
254 | 77
120
81
32
71 | 245
173
115
634
124 | 1. 63
1. 15
. 767
. 423
. 827 | 1. 88
1. 28
. 88
. 47
. 95 | A.
A.
A.
A. | | | | August
September
The year | 423
101 | 81
37 | 178
72. 3 | 1. 19
. 482 | 1. 37
. 54
15. 50 | A. | | | # WESTFIELD RIVER AT KNIGHTSVILLE, MASS. LOCATION.—At the single-span steel highway bridge known locally as the Pitcher Bridge, at Knightville, Hampshire County, 1 mile north of the outlet of Norwich Lake and about 3 miles above confluence with middle branch of Westfield River. Drainage area.—162 square miles. RECORDS AVAILABLE.—August 26, 1909, to September 30, 1915. GAGE.—Chain attached to downstream side of bridge. DISCHARGE MEASUREMENTS.—Made from bridge or by wading. Channel and control.—Bed rough, covered with bowlders and ledge rock; control practically permanent. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 8.34 feet at 8 a. m. February 25 (discharge computed from extension of rating curve, ,630 second-feet); minimum stage recorded, 0.77 foot at 5 p. m. October 1, 5 p. m. October 8, and 7.30 a. m. October 12, 1914 (discharge, 11 second-feet). 1909–1915: Maximum open-water stage recorded, 8.9 feet March 27, 1913 (discharge, 5,100 second-feet); a gage height of 9.4 feet was recorded at 9.15 a.m. January 22, 1910, but the channel was probably obstructed by ice at that time; minimum stage recorded, 0.60 foot August 10, 1913 (discharge, 4.0 second-feet). WINTER FLOW.—Discharge relation affected by ice. REGULATION.—Flow not seriously affected by regulation. Accuracy.—Rating curve is well defined below 2,000 second-feet, open-water records considered good. Discharge measurements of Westfield River at Knightville, Mass., during the year ending Sept. 30, 1915. [Made by R. S. Barnes.] | Date, | Gage
height. | Dis-
charge. | Date. | Gage
height. | Dis-
charge. | |-------|-----------------|-----------------|---------|-----------------|-----------------| | Mar 2 | Feet.
2.62 | Secft.
447 | Apr. 12 | Feet .
4. 70 | Secft.
1,790 | Daily discharge, in second-feet, of Westfield River at Knightville, Mass., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------|----------------------------------|------------------------------|------------------------------------|--|--|---|--|--|-----------------------------|--|---|---------------------------------| | 1 | 12
12
13
14
13 | 18
20
20
20
20 | 120
80
125
112
90 | 110
80
70
60
55 | 130
250
200
180
160 | 373
373
330
310
291 | 166
198
222
350
183 | 395
330
272
207
207 | 68
73
63
56
52 | 97
291
395
255
169 | 116
121
255
3,040
1,920 | 222
183
161
141
129 | | 6 | 14
14
12
14
14 | 18
20
20
19
23 | 63
48
192
92
71 | 50
600
580
373
272 | 250
640
495
350
272 | 291
272
395
291
291 | 172
523
523
610
640 | 222
207
207
207
222
183 | 55
61
61
61
46 | 207
139
1,640
1,920
730 | 985
920
495
395
610 | 118
118
116
108
101 | | 11 | 15
12
13
14
13 | 20
23
22
19
30 | 48
32
24
105
90 | 330
395
640
470
255 | 255
222
255
255
255
222 | 255
238
195
222
222 | 1,780
1,920
1,050
640
550 | 158
146
134
134
121 | 44
37
35
34
40 | 350
445
395
272
181 | 373
291
395
291
207 | 92
80
82
172
151 | | 16 | 18
49
74
63
58 | 169
153
97
99
90 | 80
60
60
55
35 | 255
195
523
1,990
985 | 1,500
790
420
330
272 | 195
192
183
164
198 | 445
395
350
330
310 | 104
116
129
121
110 | 63
84
87
73
92 | 148
136
129
129
1,240 | 222
207
166
146
139 | 99
90
85
74
68 | | 21 | 44
38
28
23
20 | 45
60
70
70
55 | 50
65
35
30
20 | 373
291
291
495
373 | 272
272
291
670
3,920 | 222
195
238
272
310 | 272
255
238
238
238
222 | 103
255
201
156
125 | 104
73
66
61
46 | 373
550
350
238
179 | 116
445
1, 180
470
445 | 179
445
183
127
108 | | 26 | 19
20
23
17
16
13 | 70
65
75
95
110 | 15
15
15
50
125
120 | 291
255
222
174
150
120 | 1,850
985
580 | 470
272
272
272
222
156
164 | 201
201
183
201
272 | 121
129
112
94
88
74 | 68
53
67
55
48 | 158
174
174
192
179
139 | 330
222
192·
207
238
291 | 108
238
146
112
101 | NOTE.—Discharge determined from a rating curve well defined below 2,000 second-feet. Discharge relation affected by ice Nov. 21 to Dec. 2, 1914, Dec. 14 to Jan. 7, and Jan. 30 to Feb. 6, 1915; discharge estimated by comparison with other records. Monthly discharge of Westfield River at Knightville, Mass., for the year ending Sept. 30, 1915. ## [Drainage area, 162 square miles.] | | D | ischarge in s | econd-feet. | • | Run-off | | |---|--|--|--|---|--|-------------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October. November. December. January February. March April. May June July August September. | 169
192
1,990
3,920
470
1,920
395
104
1,920
3,040 | 12
17
15
50
130
156
166
74
34
97
116
68 | 23. 3
54. 4
68. 5
365
582
260
455
167
60. 9
386
498
138 | 0. 144
. 336
. 423
2. 25
3. 59
1. 60
2. 81
1. 03
. 376
2. 38
3. 07
. 852 | 0. 17
. 37
. 49
2. 59
3. 74
1. 84
3. 14
1. 19
. 42
2. 74
3. 54
. 95 | C. B. B. B. A. A. A. A. A. A. | | The year | 3,920 | 12 | 253 | 1.56 | 21.18 | | #### WESTFIELD RIVER NEAR WESTFIELD, MASS. LOCATION.—At a point locally known as Trap Rock Crossing, about 3 miles east of Westfield, Hampden County, and 2 miles below the mouth of Westfield Little River. Great Brook enters about a mile above the station. Drainage area.—496 square miles. RECORDS AVAILABLE.—June 27, 1914, to September 30, 1915. GAGE.—Stevens water-stage recorder on right bank referred to datum by a hook gage inside the well; inclined staff used for auxiliary readings. DISCHARGE MEASUREMENTS.—Made from cable about one-half mile below gage or by wading. Channel and control.—Bed of gravel. Control at low and medium stages is about 200 feet below the gage; practically permanent; at high stages control is probably formed by the crest of the dam at Mittineague, 3 miles below the station. EXTREMES OF DISCHARGE.—Maximum stage during year (water-stage recorder), 17.4 feet at 11.30 p. m. August 4, 1915 (discharge, determined from an extension of the rating curve, 17,400 second-feet); minimum stage (water-stage recorder), 3.03 feet several times each day October 1, 2, 3, 6, 7, 9, and 10, 1914 (discharge, 49 second-feet). 1914–15: Maximum stage recorded, 17.4 feet at 11.30 p. m. August 4, 1915 (discharge, 17,400 second-feet); minimum stage recorded, 3.02 feet September 24, 1914 (discharge, 46 second-feet). WINTER FLOW.—Discharge relation affected by ice. DIVERSIONS.—Water is diverted from Westfield Little River for municipal supply of Springfield. The amount diverted is added in the table of monthly discharge to give the total flow of Westfield River. REGULATION.—Several power plants above the station cause diurnal fluctuation of flow. The nearest dam is
at Westfield. Accuracy.—Records considered good. Discharge measurements of Westfield River near Westfield, Mass., during the years ending Sept. 30, 1914-15. | Date. | Made by | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |-------------------------------------|--|----------------------------------|---|--|-----------------------------|--|---| | Dec. 16
Jan. 7
19
20
20 | R. S. Barnesdo. C. H. Pierce. R. S. Barnesdo | Feet. 3.55 a.5.22 10.4 7.34 7.12 | Secft.
182
393
6,810
2,950
2,670 | 1915.
Jan. 21
22
Feb. 4
Apr. 11
13
15
Aug. 16 | R. S. Barnesdododododododo. | Feet. 5.59 4.99 4.46 7.94 6.94 5.54 4.28 | Secft.
1,360
1,040
566
3,620
2,540
1,270
573 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Westfield River near Westfield, Mass., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------|--------------------------------------|---------------------------------|------------------------------------|--|-------------------------|--|---------------------------------|--|---------------------------------|--|--|---------------------------------| | 1 | 61 | 188 | 352 | 340 | 372 | 1,260 | 505 | 1,300 | 352 | 328 | 268 | 660 | | | 61 | 94 | 216 | 260 | 690 | 1,080 | 510 | 1,020 | 376 | 280 | 296 | 525 | | | 64 | 84 | 336 | 220 | 605 | 960 | 535 | 900 | 252 | 780 | 475 | 475 | | | 80 | 108 | 296 | 180 | 530 | 750 | 530 | 780 | 228 | 660 | 4,500 | 425 | | | 84 | 101 | 320 | 160 | 475 | 810 | 620 | 690 | 200 | 515 | 7,550 | 324 | | 6 | 67 | 160 | 228 | 140 | 630 | 840 | 840 | 690 | 105 | 610 | 2,500 | 324 | | | 67 | 140 | 244 | 1,790 | 1,550 | 780 | 1,220 | 600 | 168 | 490 | 1,910 | 385 | | | 84 | 152 | 304 | 990 | 1,220 | 840 | 1,190 | 630 | 248 | 870 | 1,400 | 320 | | | 70 | 84 | 192 | 430 | 840 | 810 | 1,300 | 750 | 208 | 8,200 | 1,020 | 324 | | | 70 | 70 | 212 | 212 | 660 | 750 | 1,470 | 636 | 184 | 2,030 | 1,120 | 316 | | 11 | 80 | 70 | 200 | 188 | 510 | 720 | 3,660 | 550 | 176 | 1,120 | 900 | 300 | | | 70 | 70 | 208 | 336 | 520 | 690 | 5,440 | 510 | 168 | 1,080 | 720 | 280 | | | 87 | 80 | 204 | 2,030 | 545 | 605 | 2,500 | 420 | 144 | 1,160 | 810 | 272 | | | 98 | 136 | 304 | 1,080 | 505 | 636 | 1,670 | 410 | 136 | 810 | 840 | 316 | | | 87 | 77 | 276 | 690 | 720 | 648 | 1,330 | 390 | 204 | 625 | 666 | 296 | | 16 | 101 | 340 | 240 | 480 | 4,140 | 600 | 1,190 | 348 | 204 | 520 | 605 | 328 | | | 148 | 550 | 180 | 455 | 2,160 | 607 | 1,080 | 415 | 200 | 440 | 595 | 319 | | | 140 | 385 | 180 | 2,300 | 1,360 | 614 | 990 | 415 | 348 | 364 | 525 | 310 | | | 212 | 348 | 184 | 6,000 | 1,020 | 621 | 930 | 425 | 368 | 405 | 465 | 301 | | | 260 | 224 | 108 | 3,100 | 930 | 628 | 900 | 415 | 308 | 900 | 420 | 292 | | 21 | 248 | 129 | 144 | 1,510 | 900 | 634 | 810 | 332 | 364 | 750 | 368 | 282 | | | 248 | 184 | 200 | 960 | 930 | 640 | 750 | 540 | 405 | 750 | 520 | 272 | | | 133 | 208 | 108 | 720 | 1,020 | 647 | 720 | 750 | 272 | 810 | 1,870 | 263 | | | 119 | 208 | 88 | 1,550 | 1,710 | 654 | 684 | 620 | 248 | 540 | 1,050 | 254 | | | 112 | 160 | 49 | 1,220 | 14,500 | 750 | 654 | 520 | 129 | 420 | 900 | 245 | | 26 | 129
94
91
108
115
126 | 220
200
224
284
336 | 46
43
40
40
430
405 | 960
780
720
590
455
360 | 5,040
2,210
1,590 | 930
648
580
615
500
475 | 642
600
570
565
810 | 485
445
445
405
292
188 | 140
196
208
228
192 | 435
372
376
440
385
356 | 900
654
- 545
485
636
900 | 236
332
376
320
288 | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice Dec. 16, 1914, to Jan. 18, 1915, and Feb. 1-14, 1915; estimates based on gage heights corrected for backwater by means of three discharge measurements and climatic data. Discharge interpolated Mar. 17-23 and Sept. 17-25, as recorder was not working properly. Monthly discharge of Westfield River at Westfield, Mass., for the year ending Sept. 30, 1915. [Drainage area 496 square miles.] | ` | Observed d | ischarge in se | cond-feet. | Diversion
from West-
field Little | | charge in
d-feet. | Run-off
(depth in
inches on | Accu- | |--|--|--|--|--|--|---|---|-------------------------------| | Month. | Maximum. | Minimum. | Mean. | River in
millions of
gallons | Mean. | Per
square
mile. | inches on
drainage
area). | racy. | | October
November
December
January
February
March
April
May
June
July
August
September | 260
550
352
6,000
14,500
5,440
1,300
405
8,200
7,550
660 | 61
70
40
140
372
475
505
188
105
280
268 | 113
187
206
1,010
1,710
720
1,170
559
232
897
1,170
332 | 341. 0
311. 8
341. 7
327. 4
282. 9
325. 2
319. 6
324. 6
337. 1
344. 9
324. 6
328. 7 | 130
203
223
1,030
1,730
1,736
1,190
576
250
914
1,190
349 | 0. 262
. 409
. 449
2. 08
3. 49
1. 48
2. 40
1. 16
. 504
1. 84
2. 40
. 704 | 0.30
.46
.52
2.40
3.63
1.71
2.68
1.34
.56
2.12
2.77 | B. B. C. C. A. A. A. A. A. A. | | The year | 14,500 | 40 | 687 | 3,910 | 704 | 1.42 | 19. 28 | | ### MIDDLE BRANCH OF WESTFIELD RIVER AT GOSS HEIGHTS, MASS. LOCATION.—At the single-span highway bridge in Goss Heights, Hampshire County, about 1½ miles north of the village of Huntington and half a mile above the mouth of the Middle Branch. Drainage area.—53 square miles. RECORDS AVAILABLE.—July 14, 1910, to September 30, 1915. GAGE.—Barrett & Lawrence water-stage recorder on upstream side of abutment on right bank, referred to datum by hook gage inside the well; inclined staff for auxiliary readings; prior to September 7, 1912, chain gage attached to upstream side of bridge. DISCHARGE MEASUREMENTS.—Made from the bridge or by wading. Channel and control.—Bed composed of coarse gravel and bowlders; control somewhat shifting. EXTREMES OF DISCHARGE.—1910-1915: Maximum stage, from water-stage recorder, 7.33 feet at 9 p. m. July 8, 1915 (approximate discharge, determined from extension of rating curve, 4,500 second-feet); minimum stage, from water-stage recorder, 0.70 foot at 6 p. m. October 26 to 10 a. m. October 27, 1914 (discharge, zero). WINTER FLOW.—Discharge relation seriously affected by ice. REGULATION.—Some diurnal fluctuation caused by operation of a small power plant about 2 miles above the station. ACCURACY.—Open-water records considered good. Discharge measurements of Middle Branch of Westfield River at Goss Heights, Mass., during the year ending Sept. 30, 1915. [Made by R. S. Barnes.] | Date. | Gage
height. | Dis-
charge. | Date. | Gage
height. | Dis-
charge. | |---------|--|------------------|--------|-------------------------|----------------------| | Dec. 16 | Feet.
a 1. 40
a 2. 86
a 1. 79 | Secft. 51 116 62 | Mar. 2 | Feet.
a 1.94
2.92 | Secft.
116
657 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Middle Branch of Westfield River at Goss Heights, Mass., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------|--|---------------------------------|----------------------------------|--------------------------------------|----------------------------|-----------------------------------|----------------------------|------------------------------------|--------------------------------------|--|----------------------------------|---------------------------------| | 1 | 2.3
2.3
2.0
2.0
2.0 | 2.0
4.0
2.6
2.3
2.6 | 14
16
18
15 | 12
12
12
12
12 | 45
61
53
67
77 | 138
124
99
84
97 | 35
30
35
38
38 | 102
87
82
75
65 | 7. 4
5. 6
5. 2
4. 8
4. 0 | 23
51
65
38
30 | 18
13
26
1,180
646 | 43
30
27
24
23 | | 6 | 2.0 | 2.9 | 8.9 | 17 | 143 | 82 | 61 | 61 | 2.6 | 38 | 256 | 15 | | | 2.0 | 3.6 | 9.4 | 65 | 260 | 72 | 127 | 53 | 3.6 | 19 | 208 | 12 | | | 2.0 | 2.0 | 11 | 114 | 173 | 84 | 130 | 61 | 3.6 | 919 | 149 | 13 | | | 2.0 | 4.4 | 10 | 38 | 117 | 75 | 158 | 70 | 3.2 | 886 | 87 | 13 | | | 2.3 | 3.6 | 8.4 | 23 | 77 | 61 | 179 | 51 | 2.6 | 176 | 84 | 13 | | 11 | 2.6 | 2.0 | 5. 6 | 12 | 57 | 59 | 570 | 38 | 2.3 | 80 | 57 | 12 | | | 2.6 | 3.6 | 7. 4 | 41 | 63 | 53 | 710 | 33 | 2.0 | 135 | 39 | 9. 4
 | | 2.6 | 2.6 | 7. 9 | 388 | 67 | 50 | 256 | 32 | 1.2 | 117 | 61 | 11 | | | 2.6 | 2.9 | 51 | 238 | 57 | 45 | 173 | 30 | 1.2 | 61 | 47 | 6. 4 | | | 2.6 | 2.6 | 55 | 221 | 221 | 47 | 135 | 24 | 1.4 | 41 | 38 | 3. 6 | | 16 | 3.6 | 41 | 29 | 238 | 576 | 41 | 117 | 23 | 2.9 | 35 | 35 | 3.6 | | | 12 | 35 | 23 | 335 | 294 | 38 | 107 | 24 | 4.8 | 32 | 32 | 4.4 | | | 17 | 19 | 15 | 879 | 204 | 33 | 102 | 27 | 6.0 | 30 | 24 | 4.4 | | | 17 | 14 | 12 | 840 | 161 | 30 | 92 | 23 | 4.0 | 26 | 23 | 4.0 | | | 17 | 11 | 12 | 416 | 143 | 33 | 82 | 19 | 5.6 | 112 | 19 | 6.0 | | 21 | 11 | 7.9 | 23 | 256 | 135 | 36 | 75 | 14 | 6.4 | 35 | 19 | 33 | | | 7.4 | 7.4 | 33 | 218 | 130 | 32 | 59 | 53 | 3.2 | 67 | 127 | 38 | | | 6.9 | 6.9 | 35 | 221 | 143 | 35 | 47 | 49 | 2.9 | 38 | 173 | 12 | | | 6.9 | 7.4 | 20 | 286 | 388 | 45 | 43 | 36 | 2.6 | 30 | 80 | 7.4 | | | 5.2 | 10 | 12 | 218 | 1,810 | 65 | 39 | 26 | 2.3 | 33 | 72 | 5.2 | | 26 | 1. 4
. 4
. 6
1. 4
2. 0
2. 6 | 17
26
51
41
29 | 12
11
12
23
23
14 | 182
158
135
107
80
57 | 530
238
158 | 102
61
47
38
30
38 | 38
36
35
35
75 | 24
35
23
12
9.4
8.9 | 2.0
2.0
9.4
6.9
6.0 | 24
23
23
26
26
26
18 | 53
38
35
35
80
77 | 6.0
7.4
7.9
6.0
6.4 | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice Nov. 19-27; Dec. 16 to Jan. 17; Jan. 30 to Feb. 15, and Feb. 27 to Mar 12; estimates based on gage heights corrected for backwater by means of four discharge measurements and climatic data, but owing to unstable conditions of ice can be considered only approximately correct. # Monthly discharge of Middle Branch of Westfield River at Goss Heights, Mass., for the year ending Sept. 30, 1915. ## [Drainage area, 53 square miles.] | | , D | ischarge in s | econd-feet. | | Run-off
(depth in | | |--|--|---|---|---|---------------------------------|-------------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June June July August September | 51
55
879
1,810
138
710
102
9.4
919
1,180 | 0. 4
2.0
5. 6
12
45
30
8. 9
1. 2
18
13 | 4.72
12.2
18.0
188
230
60.5
122
41.0
3.92
105
124
13.6 | 0. 089
. 230
. 340
. 3. 55
4. 34
1. 14
2. 30
. 774
. 074
1. 98
2. 34
. 257 | 0. 10 | B. C. C. C. C. A. A. A. A. A. | | The year | 1,810 | .4 | 76.1 | 1.44 | 19.48 | | ## WESTFIELD LITTLE RIVER NEAR WESTFIELD, MASS. LOCATION.—At diversion dam of Springfield waterworks, in town of Russell, Hampden County, 3 miles below confluence of Pebble and Borden brooks, and about 3 miles west of Westfield; originally (July, 1905, to December, 1909) a short distance below Borden Brook, near Cobble Mountain. DRAINAGE AREA.—48 square miles at present site; 43 square miles at original site. RECORDS AVAILABLE.—July 13, 1905, to September 30, 1915. Determination of discharge.—High-water flow determined from continuous record of head on concrete diversion dam (crest length, 155.4 feet), for which coefficients have been deduced from experiments at Cornell University; low-water flow—less than 163 second-feet—determined from continuous record of head on a 12-foot sharp-crested weir without end contractions, the crest being 2.55 feet below that of dam. Water diverted to city of Springfield is measured by a 54-inch Venturi meter, using continuous-record chart. Daily record corrected for storage in a reservoir on Borden Brook about 5 miles above station. Owing to the time required for water to reach the dam and the natural storage along the stream, and the fact that no allowance is made for evaporation and seepage from the reservoir, the record as corrected does not represent exactly the natural flow of the stream at all times. At original site below Borden Brook (used 1905 to 1909) discharge was determined by methods commonly employed at current-meter gaging stations. From August, 1906, to September, 1907, a 30-foot weir was maintained a short distance below gage. EXTREMES OF DISCHARGE.—Maximum 24-hour discharge recorded, 1,850 second-feet February 25, 1915; apparent minimum discharge zero at various times. See footnote to tables of daily and monthly discharge. DIVERSIONS.—Record of water diverted at station for municipal supply of Springfield included in records as published. COOPERATION.—Data collected and compiled under direction of E. E. Lochridge, chief engineer, Board of Water Commissioners, Springfield, Mass. ¹ Results obtained by weir and current-meter methods are compared in U. S. Geol. Survey Water-Supply Paper 201, pp. 105-110, and 241, pp. 164-168. Daily discharge, in second-feet, of Westfield Little River near Westfield, Mass., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec | Jan. | Feb. | Mar. | Apr. | May. | June. | July, | Aug. | Sept. | |--------------------------|--|------------------------------|---|-----------------------------------|---------------------------------|----------------------------------|---------------------------------|----------------------------------|-------------------------------|----------------------------------|----------------------------------|-----------------------------| | 1
2
3
4
5 | | 1.0 | 19 ⁻
28
23
33
16 | 0.5
15
20
3.2
4.3 | 146
126
96
74
62 | 114
80
70
55
68 | 38
28
37
31
50 | 228
145
115
126
119 | 24
19
16
15
13 | 88
135
114
96
77 | 19
20
26
697
522 | 43
35
33
25
21 | | 6
7
8
9 | 3.9
13 | 1.6
.7
- 11
1.0 | 14
14
22
14
14 | 14
326
158
101
49 | 283
303
153
120
89 | 55
53
55
55
55
52 | 70
123
140
136
162 | 103
101
131
123
101 | 13
15
17
15
15 | 52
47
382
962
514 | 218
160
103
77
54 | 19
20
17
14
14 | | 11 | | 12
14 | 23
14
11
29
27 | 37
185
533
232
149 | 73
81
76
49
300 | 52
50
49
52
42 | 608
767
339
177
133 | 85
70
63
57
50 | 15
4.5
3.6
11
16 | 116
104
111
73
57 | 49
43
78
56
42 | 13
15
11
3.9 | | 16.
17.
18.
19. | 12
17
13
16
17 | 78
95
40
151
142 | 9.9
3.3
3.6
15
20 | 105
130
807
925
413 | 652
258
138
111
98 | 41
39
41
36
21 | 118
110
101
94
93 | 42
49
51
41
36 | 73
125
112
62
120 | 48
41
33
25
25 | 36
41
33
24
22 | 7.0
22
23
12
12 | | 21 | 14
15
8 | 49
95
142
142
70 | 24
15
15
14
24 | 157
99
193
266
152 | 95
83
108
658
1,850 | · 31
32
58
49
70 | 64
77
77
78
70 | 48
126
102
80
61 | 117
42
38
31
25 | 28
51
53
41
26 | 28
134
236
129
96 | 38
78
23
26
12 | | 26 | 1. 5
2. 4
1. 2
2. 5
18
13 | 79
49
29
22
28 | 6.9
1.6
2.2
40
17
25 | 110
93
88
48
44
49 | 546
247
148 | 66
52
38
35
39
41 | 70
62
59
58
222 | 59
57
50
42
35
26 | 21
22
19
14
16 | 20
20
25
40
33
23 | 59
49
38
38
58
56 | 19
19
15
13
10 | Note —For days for which discharge is not given, the quantity of water released from storage was apparently equal to or greater than the total flow at the diversion dam. Monthly discharge of Westfield Little River near Westfield, Mass., for the year ending Sept. 30, 1915. # [Drainage area, 48 square miles.] | | Discharge in second-feet. | | | | | | | | | |---|---|--|---|---|--|--|--|--|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile, | (depth in
inches on
drainage
area). | | | | | | October November December January February March April May June July August September | 151
40
925
1,850
114
767
228
125
962
697 | (a)
(a)
1. 6.
0. 5
49
21
28
26
3. 6
20
19
(a) | 5. 2
41. 7
17. 3
178
251
51. 3
140
81. 3
35. 0
112
104
20. 4 | 0. 108
. 860
. 360
3. 71
5. 23
1. 07
2. 92
1. 69
. 729
2. 42
2. 17
. 425 | 0. 12
. 96
. 42
4. 28
5. 45
1. 23
3. 26
1. 95
. 81
2. 79
2. 50 | | | | | | The year | 1,850 | (a) | 85. 3 | 1.78 | 24. 24 | | | | | a See footnote to daily discharge table. ## BORDEN BROOK NEAR WESTFIELD, MASS. LOCATION.—At the outlet of Borden Brook reservoir in the town of Granville, Hampden County, 2 miles above the confluence of Borden and
Pebble brooks and about 8 miles west of Westfield. DRAINAGE AREA.—8 square miles. RECORDS AVAILABLE.—January 1, 1910, to September 30, 1915. DETERMINATION OF DISCHARGE.—Flow determined from a continuous record of the head on a 5-foot sharp-crested weir without end contractions; results are then corrected for apparent gain or loss in water stored in reservoir, but, as no allowance is made for evaporation or seepage, they show only approximately the natural flow. EXTREMES OF DISCHARGE.—Maximum 24-hour flow recorded during year, 245 second-feet on February 25, 1915; minimum apparent flow: Zero at various times when the quantity of stored water released was apparently equal to or greater than the measured flow at the weir. 1910-1915: Maximum 24-hour flow recorded, 294 second-feet on October 21, 1911; minimum apparent flow, zero. COOPERATION.—Records furnished by the board of water commissioners of Springfield, through E. E. Lockridge, chief engineer. Daily discharge, in second-feet, of Borden Brook near Westfield, Mass., for the year ending Sept. 30, 1915. | Day. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | Ju ne. | July. | Aug. | Sept. | |-----------------------|--|------------------------------|--|---|--|---|--|---|---------------------------------------|--|----------------------| | 1
2
3
4
5 | | 7. 7
9. 3 | 0.5
9.8
.7
3.2
2.0 | 27.9
18.6
18.6
9.3
9.3 | 21.7
10.8 | 9.3 | 29. 0
25. 8
9. 4
15. 6
12. 2 | | 6.8
6.7
8.1
6.8
5.4 | 146
76.3 | 3. 8
3. 2
2. 2 | | 6
7
8
9 | | | 71.6
15.5
17.0
7.7 | 48. 0
38. 7
20. 0
20. 1
18. 6 | 18.6
11.2
11.2
11.2
11.2 | 10. 8
21. 7
32. 5
21. 7
32. 5 | 4. 7
5. 8
5. 8
5. 8 | | 4. 0
2. 9
127
78. 2
37. 5 | 37. 2
24. 5
13. 2
14. 5 | | | 11 | | 9.3
7.7
7.7 | 83. 6
20. 1
65. 0
26. 3 | . 10. 8
9. 3
20. 1 | 11,2
11.2
11.2
22.1
11.2 | 163
88. 2
37. 2
24. 9
13. 9 | 5.8
4.7
3.5
2.3 | 7.1
8.2 | 21. 2
10. 0
13. 4
2. 1 | 4.4
1.9
1.1 | | | 16 | 17. 0
15. 9
6. 6
25. 2
23. 6 | 6.1
.5
.5
9.8
.7 | 17.0
34.1
152
127
54.2 | 60. 4
40. 2
20. 1
20. 1
9. 3 | 11. 2
11. 2
22. 1
12. 8 | 15.0
15.0
15.0
15.0
14.5 | | 17. 5
12. 9
9. 3
18. 6
9. 9 | | | 12.9
12.4 | | 21 | | 7. 7
9. 3 | 27. 9
9. 3
37. 2
26. 3
27. 9 | 10.8
9.3
20.1
243
245 | 11. 2
12. 8
11. 5
9. 3
21. 7 | .6
5.8
6.2
5.9
4.6 | 8. 4
9. 1
10. 0
7. 3
4. 2 | 11.0
2.2
2.2 | | 9. 5
22. 7
20. 4
20. 4
16. 9 | 37. 2
9. 3 | | 26 | 4.6
7.7 | 6.9
1.6
2.0
9.3 | 9.3
9.3
18.6
9.3
9.3 | 54. 2
21. 7
21. 7 | 10.8
10.8
10.8 | 3.5
2.8
2.8
2.8
42.1 | | | 6.6 | 4.6
2.8
3.2
5.5
5.8 | | Nore.—For days for which discharge is not given, the quantity of water released from storage was apparently equal to or greater than that passing over the weir. Monthly discharge of Borden Brook near Westfield, Mass., for the year ending Sept. 30, 1915. [Drainage area, 8.0 square miles.] | | D | Discharge in second-feet. | | | | | | | | |-----------|---|---------------------------|--|---|--|--|--|--|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in inches on drainage area). | | | | | | October | 25. 2
9. 8
152
245
22. 1
163
29. 0
18. 6 | | 0.00
6.59
3.60
29.1
40.1
10.7
21.0
5.56
3.43
11.2
13.9 | 0.000
.824
.450
3.64
5.01
1.34
2.62
.695
.429
1.40 | 0.00
.92
.52
4.20
5.22
1.54
2.92
.80
.48
1.61 | | | | | | September | 37.2 | | 2.70 | . 338 | .38 | | | | | | The year | 245 | | 12.1 | 1, 51 | 20.60 | | | | | Note.—For months for which no maximum or minimum is given see footnote to daily discharge table. #### FARMINGTON RIVER a NEAR NEW BOSTON, MASS. LOCATION.—At a highway bridge a quarter of a mile below Clam River and about a mile south of New Boston, Berkshire County. Drainage area.—92.7 square miles. RECORDS AVAILABLE.—May 27, 1913, to September 30, 1915. GAGE.—Barrett & Lawrence water-stage recorder, installed June 11, 1913, on left bank on downstream side of bridge referred to datum by a hook gage inside the well; vertical staff installed on bridge abutment May 27, 1913, is used for auxiliary readings. DISCHARGE MEASUREMENTS.—Made from a cable 120 feet below gage or by wading. Channel and control.—Channel rocky and filled with boulders; control: practically permanent except as affected by removal of rocks in measuring section. EXTREMES OF DISCHARGE.—Maximum stage during year, from water-stage recorder, 7.15 feet at 4 a. m. February 25 (discharge, computed from extension of rating curve, 2,600 second-feet); minimum stage, 2.24 feet at 6 p. m. November 3, 1914 (discharge, 4.8 second-feet). 1913–1915: Maximum stage recorded, 7.64 feet October 26, 1913 (discharge, 3,200 second-feet); minimum stage recorded, 2.22 feet August 27, 1913 (discharge, 4.4 second-feet). WINTER FLOW.—Discharge relation seriously affected by ice. REGULATION.—Flow affected by storage in Otis reservoir, about 5 miles above New Boston, and by operation of a woodworking shop just above the station. Accuracy.—Results for open-water periods considered good. Discharge measurements of Farmington River near New Boston, Mass., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by— 、 | Gage
height. | Dis-
charge. | |-------|----------------|-----------------|-----------------------|-------------------|------------------------------|-----------------------|----------------------| | | R. S. Barnesdo | | Secft.
40.8
151 | Mar. 4
June 21 | R. S. Barnes
C. H. Pierce | Feet.
3.65
3.48 | Secft.
151
122 | a Formerly published as "West Branch of Farmington River." b Discharge relation affected by ice. Daily discharge, in second-feet, of Farmington River near New Boston, Mass., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------|------------------------------------|----------------------------|----------------------------------|--|-------------------|----------------------------------|---------------------------------|------------------------------------|----------------------------|----------------------------------|--------------------------------------|----------------------------| | 1 | 65 | 12 | 32 | 50 | 269 | 269 | 77 | 197 | 67 | 116 | 56 | 96 | | | 49 | 13 | 42 | 38 | 173 | 210 | 84 | 173 | 61 | 162 | 54 | 80 | | | 38 | 13 | 44 | 33 | 151 | 162 | 87 | 162 | 54 | 151 | 105 | 65 | | | 36 | 16 | 41 | 29 | 141 | 151 | 82 | 141 | 52 | 151 | 574 | 62 | | | 29 | 15 | 36 | 29 | 131 | 131 | 93 | 131 | 47 | 141 | 1,060 | 58 | | 6 | 27 | 15 | 36 | 39 | 210 | 116 | 141 | 131 | 47 | 141 | 500 | 55 | | | 23 | 15 | 35 | 650 | 286 | 108 | 151 | 116 | 47 | 518 | 375 | 52 | | | 22 | 14 | 37 | 455 | 197 | 104 | 185 | 151 | 50 | 1,700 | 238 | 50 | | | 21 | 15 | 37 | 435 | 151 | 105 | 210 | 162 | 47 | 1,310 | 185 | 48 | | | 16 | 16 | 36 | 375 | 151 | 104 | 224 | 131 | 43 | 550 | 141 | 46 | | 11 | 13 | 16 | 40 | 210 | 197 | 87 | 375 | 112. | 41 | 337 | 114 | 44 | | | 10 | 16 | 40 | 337 | 173 | 87 | 980 | 105 | 40 | 269 | 98 | 42 | | | 10 | 15 | 44 | 680 | 122 | 86 | 525 | 98 | 37 | 224 | 112 | 39 | | | 15 | 15 | 47 | 286 | 112 | 77 | 337 | 87 | 32 | 151 | 99 | 37 | | | 29 | 16 | 71 | 185 | 141 | 77 | 254 | 81 | 34 | 110 | 84 | 37 | | 16 | 27 | 32 | 65 | 141 | 710 | 90 | 197 | 78 | 107 | 90 | 75 | 46 | | | 22 | 40 | 54 | 118 | 415 | 65 | 173 | 81 | 162 | 93 | 107 | 49 | | | 22 | 40 | 43 | 550 | 302 | 75 | 162 | 90 | 151 | 96 | 87 | 56 | | | 15 | 36 | 30 | 980 | 238 | 60 | 162 | 82 | 98 | 99 | 65 | 58 | | | 15 | 40 | 40 | 600 | 185 | 71 | 151 | 73 | 151 | 102 | 60 | 58 | | 21 | 10 | 36 | 49 | 337 | 162 | 73 | 141 | 71 | 122 | 104 | 55 | 105 | | | 7.0 | 40 | 49 | 210 | 151 | 75 | 122 | 141 | 86 | 105 | 212 | 122 | | | 11 | 36 | 41 | 224 | 162 | 77 | 118 | 162 | 86 | 107 | 415 | 90 | | | 13 | 36 | 32 | 375 | 337 | 84 | 118 | 141 | 90 | 96 | 185 | 65 | | | 11 | 38 | 34 | 269 | 2,000 | 91 | 108 | 114 | 74 | 84 | 151 | 49 | | 26 | 8.8
8.8
10
10
13
10 | 37
45
42
49
40 | 34
25
28
23
54
67 | 210
162
141
108
116
122 | 875
455
337 | 87
83
79
75
71
74 | 110
112
105
106
162 | 104
112
98
87
77
74 | 60
56
71
62
62 | 68
65
62
98
80
62 | 122
98
110
87
100
112 | 43
52
49
44
41 | Note.—Discharge determined from a rating curve well defined below 1,500 second-feet. Discharge relation affected by ice Dec. 16, 1914, to Jan. 5, 1915, and Jan. 31 to Feb. 12, 1915, estimates based on two discharge measurements and climatic data. Discharge estimated Feb. 27 to Mar. 1, and interpolated Nov. 5-7, Sept. 1, 2, 4-6, 8, 9, and 11-13, as the recorder was not working properly. Monthly discharge of Farmington River near New Boston, Mass., for the year ending Sept. 30, 1915. [Drainage area, 92.7 square miles.] | | D | Discharge in
second-feet. | | | | | | | |---|--|--|--|---|--|-------------------------------|--|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | | | October November December January February March April May June July August September | 49
71
980
2,000
269
980
197
162
1,700
1,060 | 7.0
12
23
29
112
60
77
71
32
62
54 | 19. 9
27. 0
41. 3
274
319
100
195
115
71. 2
240
188
57. 9 | 0.215
.291
.446
2.96
3.44
1.08
2.10
1.24
.768
2.59
2.03
.625 | 0. 25
.32
.51
3. 41
3. 58
1. 24
2. 34
1. 43
.86
2. 99
2. 34
.70 | B. B. C. B. A. A. A. A. A. A. | | | | The year | 2,000 | 7.0 | 136 | 1.47 | 19.97 | | | | NOTE.—The monthly discharge in second-feet per square mile and the run-off depth in inches shown by the table do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. #### HOUSATONIC RIVER BASIN. #### HOUSATONIC RIVER NEAR GREAT BARRINGTON, MASS. LOCATION.—At a highway bridge about a quarter of a mile northeast of the Van Dusenville railroad station and 2 miles north of Great Barrington, Berkshire county. Drainage area.—280 square miles. RECORDS AVAILABLE.—May 17, 1913, to September 30, 1915. GAGE.—Inclined staff attached to concrete anchorages on downstream side of left abutment of bridge; vertical high-water section attached to bridge abutment. DISCHARGE MEASUREMENTS.—Made from upstream side of bridge or by wading. CHANNEL AND CONTROL—Bed composed of sand gravel, and alluvial deposits; con- CHANNEL AND CONTROL.—Bed composed of sand, gravel, and alluvial deposits; control practically permanent. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 6.8 feet at 6 a.m. and 6 p.m. July 9 (discharge, determined from extension of rating curve, 4,100 second-feet); zero flow recorded on afternoon of October 25, 1914 (water held back by mills). 1913–1915: Maximum stage recorded, 7.9 feet March 29, 1914 (discharge, determined from extension of rating curve 5,200 second-feet); zero flow at various times due to holding back of water by mills. WINTER FLOW.—Discharge relation affected by ice. REGULATION.—Flow affected by the operation of a paper mill about a mile above the station, which causes low water on Sundays and holidays. Accuracy.—Records are based on two observations a day, but as the operation of the paper mill does not cause serious diurnal fluctuation, they are considered fairly good. Discharge measurements of Housatonic River near Great Barrington, Mass., during the year ending Sept. 30, 1915. ## [Made by R. S. Barnes.] | Date. | Gage
height. | Dis-
charge. | Date. | Gage
height. | Dis-
charge. | |---------|---------------------------|-------------------------|---------|-----------------|-----------------| | Dec. 17 | Feet.
1. 46
a 2. 42 | Sec-ft.
.151
.278 | Apr. 9. | Feet.
2.38 | Secft.
512 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Housatonic River near Great Barrington, Mass., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |--------|------------|-------------|------------|-------------------|-----------------|------------|-------------------|--------------|------------|------------|--------------|------------| | 1
2 | 115
112 | a 10
122 | 110
125 | 159
255 | 420
470 | 520
980 | 375
275 | 420
a 355 | 195
195 | 180
255 | a 159
165 | 445
470 | | 3 | 87 | 165 | 150 | a 67 | 295 | 735 | 130 | 295 | 240 | 315 | 295 | 335 | | 4 | a 13 | 150 | 115 | 90 | 315 | 580 | a 275 | 397 | 122 | 320 | 315 | 255 | | 5 | 56 | 97 | 115 | 81, | 335 | 580 | 255 | 420 | 110 | 255 | 1,340 | a 153 | | 6 | 135 | 130 | a 77 | 87 | 700 | 495 | 375 | 355 | a 13 | 420 | 1,190 | 110 | | 7 | 122 | 22 | 90 | 445 | a 520 | a 420 | 520 | 315 | 141 | 375 | 1,120 | 355 | | 8 | 125 | a 159 | 162 | 520 | 580 | 420 | 520 | 420 | 122 | 1,050 | a 770 | 240 | | 9 | 97
24 | 75 | 85 | 550 | 580 | 580 | 470 | a 335 | 105
97 | 4,110 | 69 | 315 | | 19 | 24 | 150 | 100 | a 295 | 445 | 470 | 397 | 315 | 97 | 3,370 | 520 | 275 | | 11 | a 3.0 | 107 | 110 | 210 | 375 | 335 | a 1,050 | 397 | 81 | a2,060 | 520 | . 240 | | 12 | 51 | 90 | 61 | 195 | 375 | 420 | 2,140 | 355 | 69 | 1,420 | 420 | a 180 | | 13 | 32 | . 57 | a 54 | 610 | 315 | 445 | 2,060 | 315 | a 85 | 1,190 | 315 | 225 | | 14 | 100 | 132 | 150 | 520 | a 335 | a 375 | 1,740 | 225 | 97 | 980 | 315 | 225 | | 15 | 107 | a 165 | 135 | 375 | 580 | 315 | 980 | 295 | 130 | 700 | a 375 | 195 | | 16 | 97 | 97 | 162 | 335 | 2,470 | 420 | 770 | a 195 | 122 | 495 | 240 | 240 | | 17 | 49 | 125 | 165 | a 295 | 1,740 | 397 | 640 | 195 | 75 | 470 | 375 | 225 | | 18 | a 1.0 | 195 | 159 | -420 | 1,050 | 355 | a 445 | 255 | 115 | a 295 | 470 | 255 | | 19 | 48 | 130 | 65 | 1,500 | 770 | 355 | 470 | 275 | 97 | 275 | 375 | a 180 | | 20 | 125 | 107 | a 63 | 1,260 | 700 | 315 | 610 | 295 | a 73 | 520 | 275 | 240 | | 21 | 122 | 48 | 97 | 1,050 | a 397 | a 255 | 520 | 255 | 225 | 580 | 210 | 275 | | 22 | 165 | a 67 | 165 | 295 | 520 | 375 | 420 | 275 | 130 | 470 | a 355 | 520 | | 23 | 150 | 105 | 195 | 240 | 520 | 335 | 375 | a 375 | 225 | 445 | 315 | 445 | | 24 | 110 | 130 | 150 | a 495 | 520 | 397 | 335 | 295 | 195. | 470 | 580 | 397 | | 25 | a 2.0 | 135 | 17 | 445 | 3,370 | 355 | a 355 | 255 | 195 | a 470 | 550 | 255 | | 26 | 85 | 37. | 122 | 420 | 3,640 | 420 | 240 | 335 | 165 | 255 | 610 | a 210 | | 27 | 90 | 122 | a 56 | 445 | 3,190
a1,190 | 375 | 420 | 295 | a 165 | 495 | 520 | 255 | | 28 | 75 | 90 | 85 | 335 | a 1, 190 | a 315 | 335 | 335 | 180 | 295 | 445 | 255 | | 29 | 81 | a 11 | 100 | 225 | | 225 | 295 | 375 | 210 | 355 | a 355 | 75
225 | | 30 | 83 | 165 | 105 | 95 | | 375 | 295 | a 165 | 165 | 255 | 195 | 225 | | 31 | 47 | | 135 | 150 | | 375 | | 195 | | 150 | 550 | | Sunday. Note.—Discharge determined from a rating curve well defined below 1,700 second-feet. Discharge relation may have been affected by ice at various times from Dec. 16 to Jan. 18, and Jan. 31 to Feb. 15; discharge estimated from open water rating curve. Monthly discharge of Housatonic River near Great Barrington, Mass., for the year ending Sept. 30, 1915. [Drainage area, 280 square miles.] | | D | Run-off | | | | | |---|--|---|--|--|---|---| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area), | Accu-
racy. | | October November December January February March April May June July August September | 195
195
1,500
3,640
980
2,140
420
240
4,110
1,340 | 1, 0
10
17
67
295
225
130
165
13
150
69 | 80. 9
106
112
402
954
429
603
309
138
755
462
269 | 0. 289
. 379
. 400
1. 44
3. 41
1. 53
2. 15
1. 10
2. 70
1. 65
. 961 | 0. 33
. 42
. 46
1. 66
3. 55
1. 76
2. 40
1. 27
. 55
3. 11
1. 90
1. 07 | B. B. C. C. C. B. B. B. B. B. B. B. B. B. | | The year | 3,640 | 1.0 | 382 | 1.36 | 18.48 | | #### HOUSATONIC RIVER AT FALLS VILLAGE, CONN. Location.—At Falls Village, Litchfield county, about half a mile below the power plant of the Connecticut Power Co. and 23 miles north of Gaylordsville. Drainage area.—644 square miles (measurement furnished by Connecticut Power RECORDS AVAILABLE.—July 11, 1912, to September 30, 1915. GAGE.—Temporary staff gages July 11 to October 26, 1912; chain gage 1,500 feet below the railroad station October 27, 1912, to May 22, 1914; Stevens automatic water stage recorder, 300 feet below the chain gage, December 15, 1913, to September 30, 1915. All gage heights referred to datum of chain gage. DISCHARGE MEASUREMENTS.—Made by wading at low stages from a boat at medium stages and by means of floats at flood stages. CHANNEL AND CONTROL.—Channel deep and of fairly uniform cross section; one channel at all times. Control not clearly defined except at low stages; probably permanent. EXTREMES OF DISCHARGE.—Maximum stage recorded, 13.3 feet at 4.30 p. m. March 29, 1914 (discharge, 8,830 second-feet); zero flow was recorded at various times during the months of October, 1914, to January, 1915, when power plant was shut down and water was being stored. WINTER FLOW.—Discharge relation occasionally affected by ice. REGULATION.—Prior to June, 1914; the flow at low water was regulated by power plants farther upstream; thereafter the plant of the Connecticut Power Co. completely regulated the low-water flow. The plant has a present capacity of 9,000 kilowatts with a normal head on the wheels of 90 feet. Accuracy.—Record has been
obtained by standard methods of stream-gaging and is considered good. COOPERATION.—Entire record has been furnished by the Connecticut Power Co. Discharge measurements of Housatonic River at Falls Village, Conn., during the years 1912-1914. | Date. | Made by | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |--|--|---|--|--|------------------|---|---| | 1912.
Aug. 7
8
Oct. 26
27
Nov. 11
12
13 | D. M. Wooddododododododododododododododododododo | Feet.
a 0.63
a 0.33
b 6.05
c 5.51
d 4.58
e 4.02
f 3.54 | Secft. 258 155 2,630 2,270 1,830 1,380 1,130 | 1913.
Mar. 17
May 16
July 8
9
Sept. 20
30
1914.
May 21 | Hodsdon and Jony | Feet. 6.06 2.45 1.60 1.44 1.55 1.46 .94 | Secft. 2, 620 667 254 205 235 199 82 1, 360 | a Staff gage. b Gage height by staff gage 4.20 feet. c Gage height by staff gage 3.70 feet. d Gage height by staff gage 3.50 feet. c Gage height by staff gage 2.59 feet. f Gage height by staff gage 2.19 feet. Note.—Gage heights referred to chain gage except as noted. Daily discharge, in second-feet, of Housatonic River at Falls Village, Conn., for 1912-1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July, | Aug. | Sept. | |----------------------------|--|--|--|--|--|--|---|--|---|--|---------------------------------|---| | 1912. | | | | | | ` | | | | | 192 | 189 | | 9 | | | | ••••• | • | | | | | | 224 | 445 | | 3 | | | | | | | | | | | 266 | 450 | | 4 | | | | | | | | | | | 224 | 401 | | 1 | | | | | | | | - | | • • • • • • | 175 | 576 | | | ļ | 1 | 1 | į | ļ | | | 1 | | | 940 | 571 | | 6
7 | | | | | | | | | ••••• | • • • • • • • | 248
252 | 571
495 | | 8 | | | | | | | | | | | 169 | 425 | | 9 | | | | | | | | | | | 172 | 425
308 | | 7
8
9
10 | | | | | | | | | | | 172
172 | 276 | | | 1 | l | 1 | | | | | | | 000 | 000 | | | 11
12
13
14
15 | | | | | | , | | | | 383 | 803 | 430 | | 12 | | ····· | | | | ••••• | | | | 334
338 | 637
545 | 304
329 | | 10
14 | | | | | | | | | •••• | 440 | 392 | 182 | | 15 | | | | | | | | | | 266 | 324 | 214 | | | | | | , , , , , , | | | | | | | | | | 16 | | , | | | | | | | | 324 | 347 | 228 | | 17 | | | | | | | | | • • • • • • • | 262 | 262 | 329
374 | | 18 | | | | • • • • • • • • • • • • • • • • • • • | • • • • • • | | | • • • • • • • | | 262 | 316 | 374 | | 19 | | ••••• | | | | | | •••• | · • • • • • • | 388 | 276 | 256 | | 20 | ····· | | | | | • • • • • • • | | | • • • • • • • | 284 | 430 | 242 | | 91 | | | | l | | | | | | 329 | 450 | 304 | | 21
22
23
24
25 | | | | | | | | | • | 231 | 374 | 250 | | 23 | | | | | | | | | | 288 | 338 | 200 | | 24 | | | | | | | | | | 255 | 555 | . 234 | | 25 | | | | | | | | | | 228 | 370 | 378 | | | | | | | | | | | | | | | | 26 | | | | | | | | | • • • • • • | 214 | 206 | 273
182 | | 26 | | | | | • • • • • • • | • • • • • • | | | | 196 | 307 | 182 | | 28
20 | | | | | | • • • • • • • | | • • • • • • • | • • • • • • • | 145
160 | 206
276 | 214 | | 30 | | •••• | | | | • • • • • • • | ••••• | | •••• | 175 | 245 | 234 | | 31 | | | | | | | | | ••••• | 270 | 206 | | | | | | | | | | | | | | | | | 1912-13. | | | | | | | | | | | | | | 1 | 280 | 646 | 845 | 2, 110 | 1,770 | 1,660 | 4,410 | 1,420 | 632 | 208 | 118 | 190 | | 2 | 252 | 790 | 1,000 | 2,800 | 1,660 | 1,330
1,290 | 3,660 | 1,270 | 700 | 196 | 133
178 | 190
187 | | 4 | 252
256
300 | 1,120
790 | 1 060 | 2, 430
2, 740 | 1,000 | 1,320 | 3, 180
2, 880 | 1,010
860 | 800
800 | 328
294 | 187 | 205 | | 5 | 234 | 775 | 1,050
1,720
1,960
1,900 | 2,800 | 1,600
1,320
1,290 | 1,260 | 2,720 | 480 | 1,250 | 211 | 202 | 178 | | | 201 | • • • • | | 2,000 | 1,200 | | 2,120 | 300 | 1,200 | 211 | 404 | | | 6
7
8
9
10 | 154 | 710 | 1,990
1,960
1,880 | 1,960 | 1,600 | 1,020
825
865 | 2,660 | 845 | 1,120 | 208 | 118 | 211
175
163 | | 7 | 130 | 632 | 1,960 | 2,170
2,280 | 1,550 | 825 | 2,500 | 840 | 1,060 | 175 | 190 | 175 | | 8 | 130 | 2, 130 | 1,880 | 2,280 | 1,540 | 865 | 2,300
2,100 | 700
650 | 1,080 | 224 | 184 | 163 | | _9 | 130 | 2,800 | 1,540
1,340 | 2,450 | 1,480
1,420 | 910 | 2,100 | 650 | 740 | 214 | 190 | 187 | | 10 | 130 | 2,410 | 1,340 | 2,980 | 1,420 | 1,290 | 1,810 | 508 | 624 | 208 | 214 | 163 | | 11 | 120 | 1,820 | 1,230 | 3,020 | 1,480 | 1,790 | 1,670 | 480 | 592 | 217 | 136 | 196 | | 11 | 130
130 | 1,380 | 1,120 | 2,840 | 1 220 | 1 030 | 3,670 | 440 | 529 | 224 | 112 | 166 | | 11
12
13
13
14 | 130 | 1,190 | 1,100 | 2,600 | 1,320
1,120 | 1,930
1,720
1,890
3,210 | 4,200 | 610 | 472 | 208 | 142 | 166 | | 14 | 130 | 1, 190 | 1,120 | 2,340 | 1,000 | 1,890 | 4,240 | 628 | 428 | 199 | 133 | 181 | | 15 | 217 | 1,190
1,550 | 1,120
1,080 | 2,070 | 915 | 3,210 | 4,060 | 556 | 360 | 211 | 136 | 85 | | | | | 1 | | _ | | | | | | | | | 16 | 238
109 | 1,470
1,300 | 850 | 2,080 | 940 | 3,900 | 3,420 | 542 | 208 | 199 | 115 | 92 | | 17 | | 1,300 | 925 | 2,140
2,300 | 588 | 3,800 | 2,980 | 619 | 199 | 175 | 142
118 | 80
166 | | 10 | 100 | | | | 900 | 0,000 | 2,500 | 574
512 | 178 | 196
214 | 118 | 166 | | 18 | 109 | 1.170 | 1,100 | 2 670 | QEE. | | | 014 | 104 | 417 | | 166
184 | | 18
19 | 109
157 | 1.170 | 1,230 | 2,670 | 655 | 2, 100 | 1 740 | 655 | 260 | ו כיווכי | | | | 18
19
20 | 109
157
136 | 1,170
1,000
975 | 1,100
1,230
1,530 | 2,670
2,720 | 655
725 | 3,500
2,730
2,390 | 2, 180
1, 740 | 655 | 184
360 | 202 | 118 | | | 01 | 100 | 1.170 | I | 2, 670
2, 720
2, 650 | 750 | | 1,540 | 664 | 725 | 202
154 | 196 | 166 | | 01 | 100 | 1,170
1,000
975
950
875 | 1,580
1,590 | 2,670
2,720
2,650
2,080 | 750
1,140 | 2, 410
2, 430 | 1,540 | 664
810 | 725
400 | 154
80 | 196
190 | 166
178 | | 01 | 100 | 1,170
1,000
975
950
875
860 | 1,580
1,590 | 2,670
2,720
2,650
2,080 | 750
1,140
1,640 | 2, 410
2, 430 | 1,540 | 664
810
880 | 725
400
388 | 154
80
205 | 196
190
172 | 166
178
283 | | 01 | 100 | 1,170
1,000
975
950
875
860
865 | 1,580
1,590 | 2,670
2,720
2,650
2,080
2,080
2,130 | 750
1,140
1,640 | 2, 410
2, 430 | 1,540 | 664
810
880 | 725
400
388
400 | 154
80
205
214 | 196
190
172
163 | 166
178
283 | | 01 | 100 | 1,170
1,000
975
950
875
860 | I | 2,670
2,720
2,650
2,080 | 750
1,140 | | 1,540 | 664
810 | 725
400
388 | 154
80
205 | 196
190
172 | 166
178 | | 21
22
23
24 | 109
91
166
2,160
2,960 | 1,170
1,000
975
950
875
860
865
870 | 1,580
1,590
1,530
1,510
1,320 | 2, 670
2, 720
2, 650
2, 080
2, 080
2, 130
2, 150 | 750
1,140
1,640
1,510
1,230 | 2,410
2,430
2,330
1,980
1,960 | 1,540
1,520
1,450
1,320
1,290 | 664
810
880
1,460
1,970 | 725
400
388
400
400 | 154
80
205
214
214 | 196
190
172
163
166 | 166
178
283
297
283 | | 21
22
23
24 | 109
91
166
2,160
2,960 | 1,170
1,000
975
950
875
860
865
870 | 1,580
1,590
1,530
1,510
1,320
1,200 | 2,670
2,720
2,650
2,080
2,080
2,130
2,150 | 750
1,140
1,640
1,510
1,230 | 2, 410
2, 430
2, 330
1, 980
1, 960
2, 430 | 1,540
1,520
1,450
1,320
1,290 | 664
810
880
1,460
1,970 | 725
400
388
400
400 | 154
80
205
214
214
109 | 196
190
172
163
166 | 166
178
283
297
283
208 | | 21
22
23
24 | 109
91
166
2,160
2,960 | 1,170
1,000
975
950
875
860
865
870
725
1,170 | 1,580
1,590
1,530
1,510
1,320
1,200 | 2,670
2,720
2,650
2,080
2,080
2,130
2,150 | 750
1,140
1,640
1,510
1,230
1,290
825 | 2, 410
2, 430
2, 330
1, 980
1, 960
2, 430 | 1,540
1,520
1,450
1,320
1,290
1,250
1,050 | 664
810
880
1,460
1,970
1,600
1,150 | 725
400
388
400
400 | 154
80
205
214
214
109
139 | 196
190
172
163
166 | 166
178
283
297
283
208
190
214 | | 21
22
23
24 | 109
91
166
2,160
2,960
2,690
2,360
1,420
1,160 | 975
950
875
860
865
870
725
1,170
1,040 | 1,580
1,590
1,530
1,510
1,320
1,200 | 2,670
2,720
2,650
2,080
2,080
2,130
2,150 | 750
1,140
1,640
1,510
1,230
1,290
825
1,690
| 2, 410
2, 430
2, 330
1, 980
1, 960
2, 430 | 1,540
1,520
1,450
1,320
1,290
1,250
1,050
1,070
1,610 | 664
810
880
1,460
1,970
1,600
1,150
1,030 | 725
400
388
400
400
332
336
272
283 | 154
80
205
214
214
109
139
139
115 | 196
190
172
163
166 | 166
178
283
297
283
208
190
214
208 | | 16 | 109
91
166
2,160
2,960 | 1,170
1,000
975
950
875
860
865
870 | 1,580
1,590
1,530
1,510
1,320 | 2, 670
2, 720
2, 650
2, 080
2, 080
2, 130
2, 150 | 750
1,140
1,640
1,510
1,230
1,290
825 | 2, 410
2, 430
2, 330
1, 980
1, 960
2, 430
3, 930
6, 960
8, 110 | 1,540
1,520
1,450
1,320
1,290
1,250
1,050
1,070 | 664
810
880
1,460
1,970 | 725
400
388
400
400
332
336
272 | 154
80
205
214
214
109
139 | 196
190
172
163
166 | 166
178
283
297
283
208
190
214 | Daily discharge, in second-feet, of Housatonic River at Falls Village, Conn., for 1912-1915—Continued. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |---------------|--|---------------------------------|--|--|---|--|---|---|---------------------------------|---|--|-----------------------------------| | 1913-14.
1 | 308
420
448
297
205 | 885
592
596
700
740 | 890
880
1,000
870
740 | 600
550
450
400
350 | 1,800
1,600
1,300
1,100
1,000 | 400
1,000
2,500
2,300
2,100 | 4,640
4,580
5,100
4,830
4,320 | 2,710
2,470
1,960
1,710
1,860 | 606
583
332
512
632 | 392
396
364
244
208 | 217
196
220
217
224 | 252
244
252
248
217 | | 6 | 211 | 601 | 745 | 350 | 800 | 1,900 | 3, 120 | 3,330 | 696 | 208 | 252 | 193 | | | 178 | 583 | 805 | 350 | 800 | 1,600 | 2, 750 | 3,430 | 565 | 353 | 234 | 196 | | | 154 | 538 | 1,550 | 350 | 800 | 1,400 | 2, 860 | 3,050 | 583 | 570 | 214 | 248 | | | 196 | 710 | 1,490 | 350 | 800 | 1,280 | 4, 740 | 2,630 | 480 | 420 | 196 | 241 | | | 178 | 1,220 | 1,300 | 300 | 700 | 1,330 | 5, 680 | 2,260 | 448 | 368 | 258 | 244 | | 11 | 181 | 2,020 | 1,240 | 300 | 700 | 1,240 | 5,640 | 1,700 | 400 | 416 | 280 | 238 | | | 214 | 2,010 | 900 | 250 | 600 | 1,420 | 5,040 | 1,900 | 408 | 396 | 262 | 211 | | | 376 | 1,350 | 1,170 | 200 | 600 | 1,020 | 4,260 | 2,770 | 440 | 372 | 248 | 163 | | | 280 | 1,220 | 1,010 | 200 | 600 | 975 | 3,660 | 3,160 | 332 | 318 | 234 | 220 | | | 311 | 1,010 | 740 | 200 | 600 | 855 | 3,300 | 2,840 | 220 | 318 | 202 | 234 | | 16 | 258 | 1,040 | 875 | 300 | 600 | 850 | 3, 280 | 2,600 | 380 | 314 | 190 | 227 | | | 227 | 900 | 900 | 300 | 600 | 2,020 | 3, 190 | 2,120 | 300 | 297 | 258 | 184 | | | 205 | 880 | 915 | 300 | 600 | 2,800 | 3, 220 | 1,640 | 416 | 350 | 252 | 169 | | | 199 | 1,100 | 700 | 300 | 600 | 2,530 | 3, 050 | 1,530 | 404 | 308 | 248 | 160 | | | 196 | 1,200 | 725 | 300 | 600 | 2,120 | 3, 050 | 1,460 | 388 | 266 | 227 | 142 | | 21 | 262 | 1,170 | 619 | 300 | 500 | 1,950 | 3,820 | 1,440 | 234 | 272 | 208 | 163 | | | 314 | 1,180 | 715 | 300 | 450 | 1,920 | 4,280 | 1,320 | 404 | 283 | 300 | 172 | | | 346 | 1,060 | 735 | 300 | 450 | 860 | 4,140 | 1,100 | 619 | 255 | 392 | 163 | | | 290 | 885 | 870 | 600 | 450 | 1,000 | 3,600 | 835 | 230 | 248 | 332 | 157 | | | 592 | 950 | 930 | 1,200 | 400 | 2,350 | 2,930 | 691 | 262 | 238 | 346 | 160 | | 26 | 2,060
4,510
3,500
2,636
1,700
1,270 | 955
850
795
900
880 | 835
810
855
900
870
673 | 800
800
900
1,000
1,400
1,600 | 350
400
400 | 1,590
4,040
7,190
8,520
7,390
5,640 | 2,900
3,350
3,220
3,090
3,100 | 750
780
780
780
790
637
480 | 227
248
318
262
290 | 208
238
220
224
220
214 | 300
269
276
336
244
266 | 151
136
166
163
157 | | 1914–15.
1 | 160
169
151
139
163 | 90
109
109
118
136 | 139
154
151
142
112 | 45
70
35
135
140 | 1,050
1,500
1,360
1,150
1,060 | 2,760
2,020
1,640
1,320
1,340 | 542
484
488
432
556 | 855
820
682
673
740 | 336
346
325
356
318 | 339
504
715
865
845 | 529
583
664
1, 210
3, 220 | 1,090
765
780
686
614 | | 6 | 166 | 133 | 95 | 145 | 1,340 | 1, 140 | 632 | 765 | 241 | 830 | 3,320 | 516 | | 7 | 166 | 100 | 115 | 950 | 2,320 | 1, 040 | 915 | 650 | 311 | 910 | 2,720 | 500 | | 8 | 169 | 98 | 136 | 2,240 | 1,950 | 920 | 1,090 | 740 | 308 | 1,080 | 2,170 | 504 | | 9 | 157 | 112 | 157 | 1,680 | 1,490 | 935 | 1,030 | 920 | 314 | 3,390 | 1,610 | 583 | | 10 | 160 | 118 | 118 | 1,270 | 1,240 | 955 | 1,020 | 715 | 280 | 4,480 | 1,460 | 588 | | 11 | 133 | 98 | 130 | 760 | 960 | 920 | 1,340 | 705 | 224 | 4,390 | 1,330 | 460 | | | 154 | 88 | 139 | 950 | 840 | 725 | 2,740 | 664 | 187 | 3,540 | 1,230 | 368 | | | 148 | 87 | 106 | 2,090 | 870 | 735 | 3,120 | 610 | 154 | 2,630 | 1,170 | 448 | | | 59 | 73 | 148 | 2,000 | 860 | 730 | 2,810 | 534 | 234 | 1,990 | 895 | 444 | | | 24 | 29 | 145 | 1,240 | 1,460 | 664 | 2,240 | 460 | 266 | 1,580 | 830 | 420 | | 16 | 37 | 154 | 151 | 765 | 3,830 | 601 | 1,620 | 464 | 255 | 1,280 | 850 | 460 | | | 60 | 139 | 151 | 668 | 3,960 | 691 | 1,390 | 436 | 241 | 980 | 1,020 | 476 | | | 92 | 136 | 151 | 1,700 | 3,140 | 646 | 1,230 | 476 | 297 | 960 | 1,060 | 538 | | | 121 | 136 | 124 | 2,690 | 2,200 | 592 | 990 | 504 | 356 | 835 | 910 | 400 | | | 121 | 127 | 100 | 2,660 | 1,490 | 588 | 1,070 | 500 | 529 | 1,360 | 845 | 516 | | 21 | 136
121
121
98
88 | 139
124
157
148
145 | 151
148
130
125
109 | 2,040
1,290
965
1,650
1,420 | 1,170
965
1,040
1,330
3,760 | 538
538
547
512
592 | 1,000
830
875
795
740 | 456
700
678
668
596 | 512
452
420
560
420 | 1,220
1,400
1,230
1,080
935 | 632
1,010
1,730
1,740
1,450 | 1,020
1,080
975
686 | | 26 | 112
112
115
112
112
112 | 112
115
115
100
160 | 86
98
138
136
141
130 | 1, 190
1, 000
810
655
696
583 | 5,850
4,800
3,740 | 642
655
601
606
606
601 | 637
686
720
673
730 | 547
614
601
476
432
356 | 416
276
350
336
339 | 730
745
850
850
850
840 | 1,440
1,260
1,040
960
1,060
975 | 350
730
583
460
456 | Note.—No gage height record Sept. 22, Oct. 7-14, 1912, and July 28-30, 1915; discharge estimated. Ice reported in river Feb. 7-23, 1913; Jan. 1 to Mar. 8, 1914, and Jan. 1-7, 1915. # Monthly discharge of Housatonic River at Falls Village, Conn., for 1912-15. ## [Drainage area, 644 square miles.] | | D | ischarge in se | cond-feet. | | Run-off | |-----------------------------------|-------------------|-------------------|-------------------|--------------------------|--| | Month. | Maximum, | Minimum. | Meán. | Per
square
mile. | (depth in
inches on
drainage
area). | | 1912. | | | | | | | July 11-31
August
September | 440
803
576 | 145
169
182 | 275
321
316 | 0. 427
. 498
. 491 | 0.33
.57
.55 | | 1912–13. | 2 222 | | 704 | 0.010 | | | October
November. | 2,960
2,800 | 91
632 | 591
1,180 | 0.918
1.83 | 1.06
2.04 | | December | 1,990 | 845 | 1,410 | 2. 19 | 2.52 | | January | 3,020 | 1,290 | 2,300 | 3.57 | 4.12 | | February | 1,770 | 588 | 1,250 | 1.94 | 2.02 | | March | 8,110 | 825 | 2,700 | 4. 19 | 4.83 | | April | 4,410
1,970 | 1,050
440 | 2, 420
915 | 3, 76
1, 42 | 4. 20
1. 64 | | June | 1,250 | 178 | 536 | .832 | .93 | | July | 328 | 80 | 193 | .297 | .34 | | August | 214 | 80 | 157 | . 244 | .28 | | September | 297 | 72 | 181 | . 281 | .31 | | The year | 8,110 | , 72 | 1, 150 | 1, 79 | 24. 29 | | 1913-14. | | | | | | | October | 4,510 | 154 | 726 | 1. 13 | 1.30 | | November. | 2,020 | 538
619 | 984
912 | 1, 53 \
1, 42 | 1.71 | | December January | 1,550
1,600 | 200 | 513 | .797 | 1.64
.92 | | February | 1,800 | 350 | 721 | 1. 12 | 1, 17 | | March | 8,520 | 400 | 2,390 | 3. 71 | 4.28 | | April | 5,680 | 2,750 | 3,820 | 5. 93 | 6.62 | | May | | 480 | 1,830 | 2.84 | 3.27 | | June
July | 696
570 | 220
208 | 407
306 | . 632
. 475 | .71
.55 | | August | 392 | 190 | 255 | .396 | . 46 | | September | 252 | 136 | 196 | .304 | .34 | | The year | 8,520 | 136 | 1,090 | 1.69 | 22, 97 | | 1914–15. | | | 100 | 100 | | | October | 169 | 24
29 | 122
117 | .189
.182 | .22 | | November | 160
157 | 29
86 | 131 | , 203 | .20 | | January | 2,690 | 35 | 1, 110 | 1, 72 | 1.98 | | February | 5,850 | 840 | 2,030 | 3, 15 | 3.28 | | March | 2,760 | 512 | 884 | 1.37 | 1.58 | | April | 3, 120 | 432 | 1,110 | 1,72 | 1.92 | | May
Jume | 920
560 | 356
154 | 614
332 | .953
.516 | 1. 10
. 58 | | July | 4,480 | 339 | 1.430 | 2.22 | 2.56 | | August | 3,320 | 529 | 1,320 | 2,05 | 2.36 | | September | 1,090 | 350 | 605 | . 939 | 1.05 | | The year | 5,850 | 24 | 810 | 1, 26 | 17.06 | ## HOUSATONIC RIVER AT GAYLORDSVILLE, CONN. LOCATION.—At the covered wooden highway bridge at Gaylordsville, Litchfield County, about 2 miles below mouth of Tenmile River. Drainage area.—1,020 square miles.
RECORDS AVAILABLE.—October 24, 1900, to November 14, 1914, when station was discontinued. GAGE.—Chain attached to the bridge; read once each day. DISCHARGE MEASUREMENTS.—Made from a cable 11 miles below the gage, or by wading. CHANNEL AND CONTROL.—Channel rough and irregular. Large bowlders and rocks a short distance below the bridge from the control. WINTER FLOW.—Discharge relation affected by ice for short periods. REGULATION.—The nearest dam downstream is at New Milford, Conn., about 7 miles below the station; at high stages backwater from this dam may slightly affect the discharge relation. The operation of the power plant about 1 mile above the station greatly affects the flow at low stages. A special study by means of a temporarily installed water-stage recorder in November, 1914, showed that the diurnal fluctuation at the station was so large that reliable estimates of daily discharge could not be made from one gage reading a day. For this reason neither gage heights nor discharge estimates are published for the year ending September 30, 1915. Discharge measurements of Housatonic River at Gaylordsville, Conn., during the period Oct. 1 to Nov. 14, 1914. | | | | | ` | | |---------|-------------------------------------|---|--------|--|---| | Date. | Gage
height. | Dis-
charge. | Date. | Gage
height. | Dis-
charge. | | Oct. 27 | Feet. 3.04 3.16 2.56 3.14 2.90 3.02 | Secft.
258
215
82
217
109
198 | Nov. 7 | Feet.
3. 12
2. 47
2. 99
2. 65
2. 96 | Secft.
209
53
183
88
160 | [Made by R. M. Adams.] Note.—Measurements made by wading at various sections. # POMPERAUG RIVER AT BENNETTS BRIDGE, CONN. Location.—About one-fifth mile above the confluence of the Pomperaug with Housatonic River, one-fourth mile north of Bennetts Bridge, New Haven County, and 1 mile east of the Sandy Hook Railroad station. Drainage area.—89.3 square miles. RECORDS AVAILABLE.—July 30, 1913, to September 30, 1915. GAGE.—Inclined staff in three parts, attached to rock ledge and to tree on right bank. DISCHARGE MEASUREMENTS.—Made from cable at gage or by wading. CHANNEL AND CONTROL.—Channel irregular and covered with gravel and bowlders. Control is formed by large rocks about 100 feet below the gage and is sharply defined. EXTREMES OF DISCHARGE.—Maximum stage recorded during year (no record January 1 to February 28), 4.1 feet at 4.30 p. m. August 4 (discharge, 660 second-feet); minimum stage probably occurred during the early part of October, 1914, at which time the discharge relation was uncertain by reason of temporary backwater; minimum discharge subsequent to October 17, 19 second-feet November 7-8. 1913-1915: Maximum stage recorded, 7.4 feet March 2, 1914 (discharge, 2,520 second-feet); minimum stage recorded, 0.68 second-foot September 20, 1914 (discharge, 7.7 second-feet). WINTER FLOW.—Discharge relation affected by ice. REGULATION.—Power plants at South Britain, 2½ miles above the station, cause a small diurnal fluctuation at low stages. Accuracy.—Several discharge rating curves have been used owing to changes in the control; these curves are fairly well defined except for the period September 27, 1914, to March 1, 1915, for which estimates are uncertain. Discharge measurements of Pomperaug River at Bennetts Bridge, Conn., during the year ending Sept. 30, 1915. | Date. | Made by | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |-------------------------|---------------|--|-------------------------------------|------------------------------------|------------------------------|-------------------------------|-------------------------------------| | Nov. 3
18
Dec. 19 | R. M. Adamsdo | Feet,
a 2, 68
a 3, 05
a 3, 48 | Secft.
24. 2
60. 6
b 93. 9 | Mar. 3
Apr. 10
10
June 22 | R. S. BarnesdodoC. H. Pierce | Feet. 2, 42 2, 06 2, 07 1, 23 | Secft
202
126
129
33. 2 | a Discharge relation affected by temporary dam below the gage. Daily discharge, in second-feet, of Pomperaug River at Bennetts Bridge, Conn., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |----------|----------|----------|----------|------------|--------------|------------|----------|------------|------------|----------------------| | | | | | 050 | | 140 | | | | | | 12 | | 22
22 | 45
40 | 272
231 | 70
71 | 148
110 | 54
49 | 195
104 | 21
27 | 71 | | 9 | | 26 | 40 | 209 | 76 | 97 | 46 | 76 | 32 | 64 | | 4 | | 26 | 35 | 155 | 66 | 85 | 43 | 55 | 246 | 55
52 | | 5 | | 22 | 35 | 151 | 107 | 114 | 40 | 50 | 392 | 50 | | <u>6</u> | | 22 | 35 | 166 | 144 | 112 | 39 | 93 | 184 | 50 | | 7 | | 19 | 45 | 163 | 189 | 91 | 37 | 53 | 203 | 49 | | 8 | | 19
26 | 40
45 | 159
134 | 159 1
144 | 104
104 | 43
40 | 71
257 | 141
193 | 50 | | 10 | | 20 | 45 | 134 | 128 | 82 | 37 | 101 | 355 | 49
42 | | | | 22 | 45 | 127 | 182 | 70 | | 70 | 100 | | | 11 | | 22
22 | 40 | 122 | 420 | 64 | 32
33 | 60 | 189
137 | 36
35 | | 13 | | 22 | | 120 | 224 | 98 | 30 | 52 | 235 | 40 | | 14 | | 26 | | 114 | 176 | 91 | 29 | 55 | 159 | 44 | | 15 | | 26 | | 114 | 153 | 71 | 28 | 50 | 118 | 39 | | 16 | | 112 | . | 114 | 135 | 61 | 46 | 32 | 103 | 35 | | 17 | 105 | 91 | | 106 | 127 | 66 | 42 | 36 | 84 | 32 | | 18 | 66 | 55 | l | 97 | 118 | 77 | 38 | 31 | 76 | 36 | | 19 | 55 | 50 | | 93 | 110 | 63 | 34 | 34 | 65 | 36 | | 20 | 50 | 66 | | 97 | 104 | 56 | 32 | 30 | 61 | 37 | | 21 | 35 | 66 | | 93 | 93 | 56 | ,37 | 36 | 54 | 355 | | 22 | 30 | 55 | | 96 | 89 | 213 | 32 | 46 | 120 | 280 | | 23 | 30 | 45 | | 107 | 107 | 159 | 31 | 37 | 211 | 155 | | 24 | 26
26 | 45
45 | | 106
96 | 120
101 | 112
127 | · 40 | 32
27 | 112
182 | 97
84 | | Δυ | 20 | 45 | | 90 | 101 | 124 | | | 182 | 64 | | 26 | 26 | 45 | | 91 | 93 | 101 | 29 | 28 | 141 | 75 | | 27 | 26 | 55 | | 85 | 89 | 118 | 28
29 | 30 | 85 | 80 | | 28 | 22
22 | 55
45 | | 78
87 | 80
85 | 85
72 | 29 | 24
44 | 72
78 | 80
65
58
55 | | 29 | 22 | 45 | ····· | 77 | 89
89 | 58 | 26 | 40 | 117 | 08
55 | | 31 | 26 | 25 | | 72 | 09 | 56 | 20 | 31 | 96 | | | 01 | 20 | | | 12 | l | 50 | l | | l " | •••••• | Note.—Discharge determined as follows: Oct. 17 to Dec. 11 from a rating curve not well defined; Mar. 1 to Sept. 30 from a well-defined rating curve. No estimates of discharge determined for the winter. For the period Oct. 1-16, on account of uncertainty as to backwater, no estimates have been made. b Affected by ice. Monthly discharge of Pomperaug River at Bennetts Bridge, Conn., for the year ending Sept. 30, 1915. # [Drainage area, 89.3 square miles.] | | D | Run-off | | | | | |--|--|--|--|---|---|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October 17-31 November December 1-11 March April May June July August. September | 112
45
272
420
213
54
257
392 | 22
19
35
72
66
56
26
24
21
32 | 37. 8
40. 6
40. 9
125
128
94. 2
36. 0
60. 6
138
73. 5 | 0. 423
. 455
. 458
1. 40
1. 43
1. 05
. 403
. 678
1. 55
. 823 | 0. 24
.51
.19
1. 61
1. 60
1. 21
.45
.78
1. 79 | C.
C.
C.
A.
A.
B.
A.
A. | ## HUDSON RIVER BASIN. #### HUDSON RIVER AT NORTH CREEK, N. Y. Location.—At two-span steel highway bridge in village of North Creek, Warren County, immediately above mouth of North Creek, which enters from the right. Drainage area.—804 square miles. RECORDS AVAILABLE.—September 21, 1907, to September 30, 1915. Data also in annual reports of State engineer and surveyor, and State of New York Conservation Commission. GAGE.—Chain on highway bridge, read twice daily by William Alexander. DISCHARGE MEASUREMENTS.—Made from highway bridge.. CHANNEL AND CONTROL.—Heavy gravel; practically permanent. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 6.7 feet at 7 a.m. April 13 (discharge, 8,240 second-feet); minimum stage recorded, 2.07 feet at 8 a.m. and 5 p.m. November 8 (discharge, 174 second-feet). 1907–1915: Maximum stage recorded, 12.0 feet; evening of March 27, 1913 (discharge, 30,000 second-feet); minimum stage recorded, 2.05 feet at 7.05 a.m. September 30, 1913 (discharge, 168 second-feet). WINTER FLOW.—Discharge relation affected by ice. REGULATION.—Natural flow affected by storage in Indian Lake and other reservoirs in upper Hudson River basin in connection with log driving. Results not corrected for storage. Accuracy.—Discharge rating curves well defined; estimates for open water periods considered good. Discharge measurements of Hudson River at North Creek, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |---|--|---|----------------------------------|---|---|---------------------------------------|---| | Oct. 8
Dec.
28
Jan. 11
29
Feb. 12 | C. S. De GolyerdododoR. M. Adams.C. S. De Golyer | Feet. 2.92 a 3.45 a 4.44 a 3.67 a 3.58 a 4.00 | Secft. 693 301 1,340 670 506 759 | Mar. 9
24
Apr. 15
15
June 4 | R. M. Adamsdo
E. D. Burchard
H. W. Fear
O. W. Hartwell | Feet. a 3: 03 2: 52 5: 42 5: 40 2: 21 | Secft.
870
438
4,920
4,890
279 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Hudson River at North Creek, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |------|--|---|--|---|-------------------------------------|---|---|---|---------------------------------------|---|--|-----------------------------------| | 1 | 780
780
780
780
780
732 | 520
520
520
520
520
520 | 780
2,010
2,180
2,180
2,180
2,180 | 600
560
1,120
2,100
1,840 | 685
942
1,000
1,060
942 | 3,230
3,050
2,530
1,840
1,480 | 460
460
460
460
460 | 3,050
3,050
4,440
2,210
2,370 | 745
330
302
286
266 | 700
990
840
790
840 | 890
790
745
790
940 | 1,100
940
790
700
655 | | 6 | 685
685
685
685 | 520
520
174
314
385 | 2,010
1,600
1,060
1,060
1,000 | 1,760
1,460
2,540
2,010
1,680 | 942
885
832
685
685 | 1,350
1,220
1,100
990
890 | 495
460
700
1,160
2,060 | 3,420
1,550
1,840
3,230
2,530 | 252
1,350
570
446
360 | 1,100
1,100
1,840
4,010
2,700 | 890
790
890
890
890 | 655
655
700
745
700 | | 11 | 732
685 | 485
485
485
485
560 | 780
642
560
520 | 1,340
1,180
1,060
942
642 | 600
506
418
367
361 | 890
840
790
745
700 | 5,120
6,600
7,960
6,090
4,890 | 2,210
1,220
1,280
2,530
3,420 | 342
460
610
745
700 | 7,130
2,870
2,210
1,620
1,480 | 790
700
610
570
530 | 610
610
570
840
790 | | 16 | 642
642
642
600 | 1,390
2,180
1,600
1,390
1,250 | | 560
560
520
685
1,760 | 418
685
832
759
685 | 655
610
570
530
460 | 4,890
6,340
3,420
4,010
2,870 | 530
495
1,160
610
1,220 | 530
940
1,040
1,040
1,040 | 1,280
1,100
1,100
990
1,100 | 530
495
460
495
460 | 790
940
655
610
530 | | 21 | 642
732
685
642
642 | 1,180
1,000
780
685
600 | | 1,920
1,600
1,320
1,180
1,180 | 560
485
450
600
2,180 | 460
495
495
495
530 | 3,610
3,230
1,840
1,760
3,230 | 460
460
530
446
446 | 990
1,910
840
745
700 | 1,100 ·
990
890
840
790 | 425
990
4,220
4,010
3,610 | 570
700
700
700
655 | | 26 | 642
600
600
600
600
560 | 600
780
1,120
780
780
780 | 301
520
642
600 | 1,000
780
732
670
600
600 | 3,810
3,420
3,230 | 610
790
655
610
610
570 | 2,700
2,870
2,370
2,210
2,210 | 1,910
460
940
425
390
378 | 655
610
495
425
404 | 790
790
/790
990
1,100
990 | 3,050
2,530
1,910
1,480
1,350
1,220 | 655
700
655
655
655 | Note.—Discharge determined from two well-defined rating curves, applicable Oct. 1 to Feb. 25, and Feb. 26 to Sept. 30. Discharge relation affected by ice Dec. 15 to Feb. 25; estimates based on gage height corrected for effect of ice by means of six discharge measurements and climatic data; mean discharge Dec. 15-27 estimated at 323 second-feet. Monthly discharge of Hudson River at North Creek, N. Y., for the year ending Sept. 30, 1915. # [Drainage area, 804 square miles.] | | D | Run-off | | | | | |--|--|---|--|--|--|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December Jannary February March April June June July August September | 2, 180
2, 180
2, 540
3, 810
3, 230
7, 960
4, 440
1, 910
4, 010
4, 220 | 560
174
520
361
460
460
378
252
700
425
530 | 676
771
801
1, 180
1, 040
993
2, 850
1, 590
671
1, 480
1, 260
708 | 0. 841
. 959
. 996
1. 47
1. 29
1. 24
3. 54
1. 98
. 835
1. 84
1. 57 | 0. 97
1. 07
1. 15
1. 70
1. 34
1. 43
3. 95
2. 28
. 93
2. 12
1. 81 | A.
B.
B.
A.
A.
A.
A. | | The year | 7,960 | 174 | 1,170 | 1.46 | 19.73 | | Note.—The monthly discharge in second-feet per square mile and the run-off depth in inches shown by the table do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow. # HUDSON RIVER AT THURMAN, N. Y. LOCATION.—At Delaware & Hudson Railroad bridge at Thurman, Warren County, about 950 feet below highway bridge on road to Warrensburg, about 2,000 feet below Schroon River, and about 13 miles above Sacandaga River, which enters from the right. Drainage area.—1,550 square miles. RECORDS AVAILABLE.—September 1, 1907, to September 30, 1915. Data also in annual reports of State engineer and surveyor, and State of New York Conservation Commission. GAGE.—Chain gage on bridge; read twice daily by S. H. Spencer. DISCHARGE MEASUREMENTS. - Made from the bridge. CHANNEL AND CONTROL.—Sand and gravel; likely to shift. Logs occasionally accumulate at control and around bridge piers. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 6.40 feet at 8 a. m. April 12 (discharge, 11,400 second-feet); minimum stage recorded, 2.30 feet at 4 p. m., December 14; and 8 a. m. December 15 (discharge, 440 second-feet). 1907–1915: Maximum stage recorded 12.5 feet during late evening of March 27, 1913 (determined by leveling from flood marks; approximate discharge, 46,000 second-feet); minimum stage recorded, 2.12 feet at 8.55 a.m. and 6.20 p.m. September 30, 1913 (discharge, 290 second-feet). WINTER FLOW.—Discharge relation seriously affected by ice. REGULATION.—Flow affected by storage at Indian Lake and by operation of mills on Schroon River. Results not corrected for storage. ACCURACY.—Results fair. COOPERATION.—Gage-height record furnished by the International Paper Co. Discharge measurements of Hudson River at Thurman, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height, | Dis-
charge. | Date. | Date. Made by— | | Dis-
charge. | |--------------------------|----------------------------------|--------------------------------------|---------------------------------|-------------------|----------------|-------------------------|------------------------| | Dec. 29
Mar. 23
26 | C. S. De Golyer
R. M. Adamsdo | Feet.
a 3. 89
a 3. 24
3. 24 | Secft.
644
1,610
1,860 | Apr. 15
June 2 | | Feet.
5. 28
2. 56 | Secft.
7,380
810 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Hudson River at Thurman, N. Y., for the year ending Sept. 30, 1915. | | | | Ι_' | | . 1 | | | | | ~ . | |----------|--------------|----------------|----------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------| | Day. | Oct. | Nov. | Dec. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | | 1 | 1,040 | 770 | | , | 1,380 | 3,860 | 1,740 | 1,380 | 1,550 | 2,370 | | 2 | 900 | 822 | | | 1,550 | 3,460 | 905 | 1,840 | 1,940 | 1,640 | | 3 | 956 | 914
848 | | | 1,460
1,460 | 3,590
2,840 | 680
680 | 1,740
1,550 | 1,740 | 1,550
1,220 | | 5 | 796
1,030 | 698 | 2,720 | | | 4,710 | 645 | 1,550 | 2,370 | 760 | | 6 | 874 | 770 | 2,260 | | 1,550 | 4,140 | 610 | 2,040 | 2,040 | 1,020 | | 7 | 861 | 809 | 1,940 | • • • • • • • • | 1,550
1,840 | 3,590 | 645
1,460 | 2,370
2,840 | 1,940
2,040 | 1,080 | | 8
9 | 874
900 | 606
887 | 1,740
1,460 | | | 1,840
3,860 | 720 | 6,170 | 2,150 | 1,380
1,080 | | 10 | 984 | 848 | 1,230 | | | 1,740 | 905 | 5,000 | 2,600 | 1,080 | | 11 | 835 | 674 | 1,040 | | | 1,640 | 680 | 5,290 | 2,260 | 1,020 | | 12 | 928
848 | 650 | 796
900 |] | | 1,550 | 680
850 | 5,580
4,140 | 1,840 | 1,150 | | 14 | 848
822 | 928
900 | 639 | | | 1,550
1,740 | 960 | 4, 140 | 1,740
1,460 | 1,080
1,460 | | 15 | 835 | 606 | | | 7,760 | 6, 170 | 1,020 | 3, 860 | 1,380 | 1,460 | | 16 | | 1,740 | | | 6,170 | 1,220 | 1,020 | 3,330 | 1,300 | 1,150 | | 17 | 984
900 | 2,840 | | | 6,470
5,870 | 1,150 | 1,220
1,380 | 3,080 | 1,300
1,080 | 1,150 | | 18
19 | 1,170 | 2,480
2,040 | | | 4,710 | 1,380
1,220 | 1,300 | 2,600
2,370 | 850 | 1,080
1,020 | | 20 | 1,140 | 2,040 | | | 4,710 | 2,480 | 1,300 | 2,370 | 760 | 960 | | 21
| 956 | | | | | 1,300 | 1,300 | 2,370 | 805 | 960 | | 22 | 1,060 | | | | 6,170 | 1,150 | 1,080 | 2,150 | 1,220 | 1,150 | | 23
24 | 1,030
956 | | | | | 1,020
2,840 | 1,460
1,020 | 2,260
2,040 | 5,870
5,580 | 1,300
1,080 | | 25 | 861 | | | | 5,000 | 1,220 | 1,020 | 1,940 | 5,290 | 1,300 | | 26 | 1,040 | | | 1,740 | 3,860 | 1,150 | 905 | 2,370 | 4,420 | 1,080 | | 27 | 887 | l. . | | 1,840 | 2,480 | 1,220 | 805 | 2,260 | 3,590 | 960 | | 28 | 1,010
770 | - | | 1,740 | 4,140 | 1,150 | 760 | 1,740 | 3,330 | 1,150 | | 29
30 | 770 | l· · · · · · · | | 1,640
1,460 | 3,860
4,710 | 1,080
850 | 760
850 | 1,380
2,260 | 2,600
2,480 | 1,020
1,020 | | 31 | 835 | | | 1,460 | 2, 110 | 850 | , 000 | 1,940 | 2,150 | 1,020 | | | | l | | , -, -, -, | 1 | 1 | | _, | -, | | Note.—Discharge determined from two well-defined rating curves applicable as follows: Oct. 1 to Dec. 14, and Mar. 26 to Sept. 30. Discharge relation affected by fee from about Nov. 22 to Dec. 2 and Dec. 15 to Mar. 25, 1915; mean discharge estimated as follows: Nov. 22 to Dec. 1, 1,450 second-feet; Dec. 15-31, 675 second-feet; Jan. 1-31, 1,790 second-feet; Feb. 1-28, 1,870 second-feet; Mar. 1-25, 2,570 second-feet. Monthly discharge of Hudson River at Thurman, N. Y., for the year ending Sept. 30, 1915. [Drainage area, 1,550 square miles.] | • | D | ischarge in s | econd-feet. | | Run-off | | |--|---|--|--|---|---|--| | Month. | Maximum. | Minimum. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | | October November December January February March April May June July | 2,840
3,080
11,400
6,170
1,740
6,170 | 710
606
1,380
850
610
1,380 | 923
1,210
1,160
1,790
1,870
2,390
4,480
2,180
979
2,780 | 0.595
.781
.748
1.15
1.21
1.54
2.89
1.41
.632 | 0.69
.87
.86
1.33
1.26
1.78
3.22
1.63
.70
2.06 | B.
B.
C.
C.
C.
A.
A. | | August | 5.870 | 760
760 | 2,310
1,190 | 1.49
.768 | 1.72
.86 | A.
A. | | The year | 11,400 | 606 | 1,940 | 1.25 | 16.98 | | Note.—The monthly discharge in second-feet per square mile and the run-off depth in inches shown by the table do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow. #### HUDSON RIVER AT SPIER FALLS, N.Y. Location.—Half a mile below Spier Falls dam, Saratoga County, about 11½ miles below Sacandaga River, and about 11 miles by road southwest of Glens Falls. Drainage area.—2,800 square miles. (Measured on topographic maps.) RECORDS AVAILABLE.—October 7, 1912, to September 30, 1915. Data also in annual reports of State engineer and surveyor and State of New York Conservation Commission. GAGE.—Gurley Simplex water-stage recorder referred to a hook gage inside of well; inclined staff for auxiliary readings. Recorder inspected by H. T. Wakely, chief operator of the power plant. DISCHARGE MEASUREMENTS.—Made from a cable about 1,000 feet below gage. CHANNEL AND CONTROL.—Coarse gravel and bowlders, practically permanent. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, water-stage recorder, 10.50 feet at 8 a. m. April 13 (discharge, 26,600 second-feet); minimum stage water-stage recorder, 0.76 foot at 5 a. m. June 16 (discharge, 96 second-feet). 1912-1915: Maximum stage, water-stage recorder, 18.59 feet at 12.25 a.m. March 28, 1913 (discharge, 89,100 second-feet); minimum stage, 0.06 foot September 15, 1912 (discharge, 5.7 second-feet; power plant shut down and flow of river stored above dam). WINTER FLOW. - Discharge relation occasionally affected by ice. REGULATION.—Flow affected by operation of the Spier Falls power plant (resulting in low discharge on Sunday) and by storage in Indian Lake. Results not corrected for storage. Accuracy.—Results considered excellent except when discharge relation is affected by ice. Rating curve well defined; daily discharge determined by averaging hourly discharge to compensate for effect of operation of Spier Falls power plant. Discharge measurements of Hudson River at Spter Falls, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | |---------------|-----------------------------------|-----------------------|---------------------------| | Feb. 22
26 | C. S. De Golyer
O. W. Hartwell | Feet.
4.63
8.24 | Secft.
4,930
16,500 | Daily discharge, in second-feet, of Hudson River at Spier Falls, N. Y., for the year ending Sept. 30, 1915. | Day. | Oet. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |----------------------------|---|---|--|---|--|--|--|--|---|--|---|---| | 1
2
3
4
5 | 1,530
1,320
918 | 1,100
1,210
998
1,430
1,320 | 3,210
3,220
5,070
6,150
5,290 | 1,640
1,540
1,680
1,530
1,720 | 2,830
2,890
2,880
2,280
2,500 | 13,400
12,000
10,400
8,890
7,820 | 3, 130
3, 240
3, 310
3, 010
3, 410 | 5,580
7,070
6,360
6,480
6,350 | 2,210
2,090
2,190
1,810
1,300 | 2,440
6,540
6,410
6,000
5,500 | 2,850
3,250
3,190
2,950
5,900 | 3,350 | | 6
7
8
9
10 | 1,360 | 1,270
1,160
490
1,540
1,130 | 4,290
3,340
2,970
2,980
2,930 | 2,450
2,480
3,110
6,270
5,340 | 2,510
2,780
3,050
2,780
2,670 | 7,030
6,220
5,670
5,110
4,790 | 3,300
3,740
4,190
6,250
8,810 | 5,560
5,750
4,210
3,430
4,490 | 467
1,080
1,910
1,460
1,130 | 5,800
5,480
6,520
12,000
12,000 | 6,180
5,780
5,780
6,470
6,280 | 1,560
2,270
2,330
1,690
2,690 | | 11 | 1.410 | 1,140
1,040
1,110
1,040
972 | 2,620
2,340
1,490
1,710
1,710 | 4,930
4,300
3,880
3,600
3,330 | 2,530
2,310
2,460
2,170
2,460 | 4,160
4,080
3,910
3,830
3,880 | 15,400
23,300
25,800
23,200
19,500 | 3,340
3,050
2,770
2,990
4,130 | 1,310
1,030
593
1,410
1,570 | 12,700
13,200
8,790
8,510
7,130 | 5,480
4,700
4,100
3,420
2,720 | 2,260
946
2,110
2,020
2,050 | | 16
17
18
19
20 | 1,390
1,250
955
1,430
1,560 | 2,570
3,800
4,600
3,560
2,630 | 1,350
1,360
1,240
963
993 | 3,070
2,740
3,650
6,100
8,140 | 3,960
5,180
5,060
5,160
4,990 | 3,730
3,700
3,600
3,450
3,370 | 16,300
13,900
12,200
10,800
9,800 | 3,460
2,930
2,380
4,150
3,010 | 1,530
2,300
2,200
2,100
1,160 | 5,750
4,910
4,050
4,030
3,260 | 3,100
2,840
2,530
2,280
2,370 | 2,380
2,880
3,020
1,880
2,450 | | 21 | 1,830 | 2,590
2,480
2,850
2,340
2,110 | 2,000
1,900
1,770
1,770
1,720 | 8,620
7,990
7,070
6,110
5,540 | 4,460
4,190
3,820
4,320
14,000 | 3, 190
3, 490
3, 230
3, 560
4, 190 | 9,500
10,000
8,010
6,300
5,930 | 3,590
3,030
2,620
3,890
2,820 | 2,200
1,940
2,030
2,370
1,730 | 3,150
8,140
3,030
2,770
2,390 | 2,120
2,500
12,100
12,800
12,400 | 1,890
2,130
1,980
2,470
2,390 | | 26 | 1,210 | 1,300
2,460
2,960
3,480
3,520 | 1,490
1,000
2,060
1,440
1,430
1,510 | | 17, 200
15, 600
14, 700 | 4,550
4,260
3,930
4,140
3,500
3,120 | 6,980
4,670
5,560
6,900
5,850 | 2,930
3,440
2,720
3,140
1,780
2,020 | 1,290
551
1,280
1 390
1,490 | 3,380
3,340
4,000
3,400
3,490
3,640 | 11,200
9,650
8,020
6,190
5,450
4,670 | 1,520
2,440
2,150
2,390
1,790 | Note.—Discharge Dec. 27, Apr. 18 and 19, estimated. Discharge for other days is mean of 24 hourly determinations for each day. Discharge determined from a well-defined rating curve. Monthly discharge of Hudson River at Spier Falls, N. Y., for the year ending Sept. 30, 1915. #### · [Drainage area, 2,800 square miles.] | | D | ischarge in se | econd-feet. | | Run-off
(depth in | | |---|---|--|--|--|---|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | inches on
drainage
area). | Accu-
racy. | | October November
December January February March April. May June. July August September | 4,600
6,150
8,620
17,200
13,400
25,800
7,070
2,370
13,200
12,800 | 918
490
963
1,530
2,170
3,120
3,010
1,780
467
2,440
2,120
2,120 | 1,380
2,070
2,370
4,180
5,000
5,170
9,410
3,850
1,570
5,700
5,400
2,300 | 0. 493
. 739
. 846
1. 49
1. 81
1. 85
3. 36
1. 38
. 561
2. 04
1. 95 | 0.57
.82
.98
1.72
1.88
2.13
3.75
1.59
.63
2.35
2.25
0.92 | A.
A.
A.
A.
A.
A.
A.
A. | | The year. | · | 467 | 4,030 | 1.44 | 19. 59 | | NOTE.—The monthly discharge in second-feet per square mile and the run-off depth in inches shown by the table do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow. # HUDSON RIVER AT MECHANICVILLE, N.Y. LOCATION.—At the Duncan dam of the West Virginia Pulp & Paper Co., in the village, of Mechanicville, Saratoga County, about 3,700 feet above Anthony Kill, 14 miles below Hoosic River and about 19 miles above Mohawk River. Drainage area.-4,500 square miles. RECORDS AVAILABLE.—1888 to September 30, 1915. Data also in annual reports of State engineer and surveyor, and State of New York Conservation Commission. GAGE.—Recording gage referred to a vertical staff showing depth of water over crest of dam; prior to summer of 1910, vertical staff, read twice a day. DETERMINATION OF DISCHARGE.—Discharge determined from a rating curve based on coefficients used by United States Geological Survey for dams of ogee section, and continuous record of the run of wheels in adjoining paper mill. EXTREMES OF DISCHARGE.—1888-1915: Maximum discharge recorded, 120,000 second-feet at 6 a. m. March 28, 1913. The plant is occasionally shut down and the flow of the river stored in the pond, so that the discharge below the plant becomes practically zero. DIVERSIONS.—Water diverted above station for Champlain Canal; no correction made for diversion. REGULATION.—Flow affected by operation of dams above station, which often results in low discharge on Sunday. COOPERATION.—Records computed and furnished by R. P. Bloss, engineer, West Virginia Pulp & Paper Co. Daily discharge, in second-feet, of Hudson River at Mechanicville, N. Y., for the year ending Sept. 30, 1915. | Day . | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |----------------------------|-----------------------|---|--|--|--|---|--|--|---|--|---|--| | 1
2
3
4
5 | 990
1,068
1,020 | 925
947
1,070
769
910 | 4,154
4,374
4,162
5,450
6,542 | 1,990
2,097
2,521
1,858
1,453 | 4, 104
3, 646
4, 078
3, 955
3, 772 | 19, 619
18, 944
16, 055
14, 516
12, 066 | 5,750
6,344
5,323
5,519
5,986 | 8,221
9,287
8,744
9,141
7,682 | 3,222
2,328
2,696
2,204
1,697 | 1,665
5,794
10,508
7,486
6,479 | 5,026
5,679
5,845
6,219
8,585 | 5, 145
5, 336
5, 375
5, 093
2, 671 | | 6 | 1,863
1,472 | 906
913
900
910
917 | 3,935
4,938
2,999
1,884
3,515 | 1,727
9,393
6,900
5,365
6,887 | 5, 141
6, 220
6, 748
5, 639
4, 711 | 11,276
10,314
11,273
9,191
8,168 | 6, 193
5, 707
6, 525
7, 089
8, 908 | 7,671
7,680
5,974
5,201
6,715 | 815
2,377
1,734
1,433
2,040 | 7, 628
7, 826
20, 966
25, 429
18, 061 | 10,659
10,902
10,796
10,792
10,309 | 2,118
4,801
3,366
3,956
3,207 | | 11
12
13
14
15 | 1.401 | 1,200
963
898
1,039
1,097 | 3,817
2,846
1,827
2,314
1,273 | 6,604
5,754
5,752
5,467
5,788 | 5,075
4,367
4,348
4,451
20,676 | 8, 217
7, 555
7, 841
7, 806
7, 608 | 27,728
29,727
31,436
28,571
23,429 | 5,793
5,368
3,867
4,141
3,893 | 2,082
1,719
763
1,958
1,269 | 15, 359
15, 602
9, 168
8, 649
8, 526 | 9, 144
7, 797
7, 040
5, 605
4, 663 | 4,447
1,806
3,130
4,777
3,914 | | 16
17
18
19
20 | 1 190 | 1,525
4,116
4,727
4,838
4,464 | 1,705
1,404
1,404
1,404
954 | 4,144
5,602
12,806
14,710
13,093 | 17, 431
13, 028
10, 768
10, 397
7, 919 | 7,614
7,219
7,259
6,658
5,732 | 19,361
19,907
17,354
15,329
13,607 | 4,268
4,977
3,901
2,527
5,075 | 1,584
2,032
2,955
1,409
2,204 | 7,321
6,431
4,151
7,233
5,342 | 5,558
5,379
5,127
4,120
2,960 | 4,313
3,128
3,892
3,322
3,289 | | 2122232425 | 1,763
1,113 | 3,420
2,069
4,245
4,003
1,964 | 1,627
2,241
1,835
2,125
1,746 | 11,317
10,539
9,041
9,206
8,396 | 8,668
8,459
7,735
11,682
33,185 | 5,576
6,960
6,948
6,803
7,614 | 12,647
12,666
11,723
9,152
8,315 | 4,863
4,755
2,900
4,856
4,760 | 2,215
3,141
3,121
1,752
2,316 | 5,357
5,608
5,074
4,885
3,169 | 3, 139
1, 982
6, 842
14, 944
14, 776 | 3,629
4,072
4,226
4,541
3,968 | | 26 | 1.817 | 2,347
1,847
2,786
2,878
4,240 | 2,634
950
1,115
1,665
1,998
1,452 | 7,435
6,259
5,520
5,378
5,146
3,000 | 30, 973
25, 338
20, 631 | | 9, 928
9, 126
7, 051
8, 705
7, 784 | 3, 188
3, 742
4, 765
3, 938
2, 800
4, 917 | 1,797
963
1,870
1,294
1,198 | 5,592
7,631
7,781
6,916
6,179
5,589 | 14, 673
12, 843
10, 393
8, 466
8, 417
5, 725 | 2,200
4,212
4,143
3,459
4,073 | Note.-Discharge estimated Oct. 11, 18, 25, and Nov. 1. ¹ The highest known flood prior to this time occurred in April, 1869; calculated discharge, 70,000 second-feet. See Water-Supply Paper 65, p. 51, and report of United States Board of Engineers on Deep Waterways, pt. 1, pp. 377-380. Monthly discharge of Hudson River at Mechanicville, N. Y., for the year ending Sept. 30, 1915. ### [Drainage area, 4,500 square miles] | | D | ischarge in se | econd-feet. | i. | Run-off | |--|--|---|---|---|--| | Month: | Maximum. | Minimum. | Mean. | 'Per
square
mile. | (depth in
inches on
drainage
area). | | October November Decamber January February March April | 4,838
6,542
14,710
33,185
19,619 | 750
769
950
1,453
3,646
5,576
5,323 | 1,240
2,130
2,590
6,480
10,500
9,110
12,900 | 0.276
.473
.576
1.44
2.33
2.02
2.87 | 0.32
.53
.66
1.66
2.43
2.33 | | May.
June
July
August
September | 9,287
3,222
25,429
14,944 | 2,527
763
1,665
1,982
1,806 | 5,340
1,940
8,500
7,880
3,850 | 1.19
.431
1.89
1.75
.856 | 1.3
.49
2.19
2.00 | | The year | 33, 185 | 750 | 6,010 | 1.34 | 18.1 | Note.—The monthly discharge in second-feet per square mile and the run-off depth in inches, shown by the table, do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. # CEDAR RIVER NEAR INDIAN LAKE, N. Y. Location.—At steel highway bridge, about 2 miles west of Indian Lake village, Hamilton County, 8 miles by river above Rock River, 10 miles by river below Cedar River Flow (Wakely dam), and about 12 miles above mouth of river. Drainage area.—85 square miles (measured on topographic maps). RECORDS AVAILABLE.—July 15, 1911, to September 30, 1915. Data published also in annual reports of State engineer and surveyor and State of New York Conservation Commission. Gage.—Chain on highway bridge; read once daily, October 1 to June 4, and twice daily, June 5 to September 30, by Chauncey Hill. DISCHARGE MEASUREMENTS.—Made from the bridge or by wading. CHANNEL AND CONTROL.—Coarse gravel and small bowlders; practically permanent. Extremes of discharge.—Maximum stage recorded during year: 12.2 feet at 9 a. m. April 12, probably affected by backwater from ice; maximum discharge probably represented by gage height 10.1 feet at 9 a. m. May 1 and 1 p. m. May 6 (approximate discharge, 2,650 second-feet); minimum stage recorded, 2.10 feet at 4 p. m. September 27 (approximate discharge, 5 second-feet). 1911-1915: Maximum discharge recorded (approximately 3,600 second-feet) at a stage of 12.0 feet at 1 p. m April 20. 1914; minimum stage recorded, 2.10 feet 4 p. m. September 27, 1915 (approximate discharge, 5 second-feet). WINTER FLOW.—Discharge relation seriously affected by ice; observations suspended. REGULATION.—Flow affected by storage in Cedar Lake and Cedar River Flow; storage in Cedar River Flow used principally during the logging season. Accuracy.—Results for open-water season fair except for months during which extreme fluctuations are caused by logging operations. Discharge measurements of Cedar River near Indian Lake, N. Y.,
during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | |-------------------|----------------------------------|-------------------------|--------------------| | Oct. 21
June 5 | C. H. Pierce.
O. W. Hartwell. | Feet.
3. 12
2. 65 | Secft.
74
31 | Daily discharge in second-feet of Cedar River near Indian Lake, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |------|----------------------------------|---------------------------------------|---------------------------------|------|-------|------|---------------------------------------|-----------------------------------|---------------------------------|-------------------------------------|---------------------------------------|----------------------------------| | 1 | 34
30
30
27
27 | 52
42
42
62
74 | 810
634
702
370
226 | | | | | 2,650
130
226
164
130 | 34
34
34
34
30 | 194
93
68
122
237 | 42
86
39
130
184 | 74
34
24
20
- 24 | | 6 | 27
62
100
164
146 | 62
52
42
42
27 | 146
138
130
130
138 | | | | | 2,650
100
130
146
114 | 9
848
35
33
28 | 204
146
422
478
422 | 226
226
155
68
54 | 27
27
74
27
34 | | 11 | 146
114
107
100
52 | 42
42
42
74
80 | 107
130
130
204
194 | | | | 1,080
668
538 | 86
86
74
62
62 | 50
74
40
62
74 | 450
62
44
58
36 | 74
54
48
54
37 | 27
27
27
52
47 | | 16 | 57
62
62
74
100 | 1, 250
1, 250
738
702
702 | 184
184
174
164 | | | | 570
668
634
602
602 | 52
74
52
52
62 | 174
194
138
146
122 | 74
226
155
86
107 | 57
42
40
36
40 | 33
, 28
28
36
27 | | 21 | 74
42
42
47
42 | 370
370
248
204
194 | | | ••••• | | 570
570
508
248
184 | 42
52
42
42
42 | 62
47
40
50
50 | 62
49
50
48
74 | 44
668
848
634
508 | 27
27
27
27
27 | | 26 | 52
38
34
62
52
57 | 204
296
810
1,040
1,040 | , | | | | 130
2, 210
114
2, 300
146 | 52
42
42
42
52
34 | 44
50
50
30
39 | 62
86
68
284
114
.43 | 320
155
130
130
114
80 | 34
13
27
27
27
27 | Note.—Discharge determined from a fairly well-defined rating curve. Discharge relation affected by ice Dec. 20 to Apr. 12; discharge not computed. Discharge during April, May, and June may be somewhat in error owing to violent fluctuations caused by logging operations. These data supersede those published in the 1915 Annual Report of the New York State engineer and surveyor. in against du Monthly discharge of Gedar River near Indian Lake, N. Y., for the year ending Sept. 30, 1915. | Drainage | araa | 85 | sanara | miles 1 | |-------------|-------|------|--------|---------| | I DI ALUAKO | aroa. | · OU | ouware | miles. | | , | D | ischarge in se | econd-feet. | | Run-off
(depth in | | |---|-------------------------------------|---|--|--|--|----------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | inches on
drainage
area). | Accu-
racy. | | October November December 1–19 April 13–30 May June July August September | 2,300
2,650
848
478
848 | 27
27
107
114
34
9
36
36
13 | 66
340
258
685
245
88
149
172
32 | 0. 776
4. 00
3. 04
8. 06
2. 88
1. 04
1. 75
2. 02
. 376 | 0. 89
4. 46
2. 15
5. 40
3. 32
1. 16
2. 02
2. 33
. 42 | B. B. C. D. C. B. A. A. B. | Note.—The monthly discharge in second-feet pet square mile and the run-off depth in inches shown by the table do not represent the natural flow from the basin because of artificial storage. ### INDIAN LAKE RESERVOIR NEAR INDIAN LAKE, N. Y. - Location.—At the dam at the outlet of Indian Lake, about 2 miles south of Indian Lake village; Hamilton County, and about $7\frac{1}{2}$ miles above the mouth of Indian River. - Drainage area.—131 square miles, including about 9.3 square miles of water surface of Indian Lake at the elevation of the spillway of the dam (measured on topographic map). - RECORDS AVAILABLE.—Records of stage and gate openings July 22, 1900, to September 30, 1915. Data also in annual reports of the State engineer and surveyor, State Water Supply Commission, and State of New York Conservation Commission. - GAGE.—Elevation of water surface in reservoir determined by a chain gage at the dam; prior to November 17, 1911, a staff gage was used or readings were obtained by measuring down from a bench mark; read once daily by Lester Sevarie. - Storage dam.—The masonry storage dam was completed in 1899 and replaced a lumbering dam at the same site. The spillway is in 5 sections, having a total effective length of 88.7 feet, a mean crest elevation of 33.38 feet above reservoir gage datum, and 1,650 feet above mean sea level. There are two logways, one 15 feet wide with bottom at elevation 24.12 feet reservoir gage datum, the other 14 feet wide with bottom at elevation 32.48 feet reservoir gage datum. The discharge at ordinary stages is through one or both of two 5-foot circular sluice gates, controlled independently, and taking water from separate wells in the gate house. - DETERMINATION OF DISCHARGE.—Discharge over the spillway is determined by means of a rating curve based on experiments made in the hydraulic laboratory of Cornell University.¹ Rating curves for the sluice gates have been determined from current-meter measurements at the gaging station on Indian River three-fourths mile below the dam. The results are withheld for further study. # EXTREMES OF STAGE: Maximum stage recorded during year, 35.9 feet August 25; minimum stage recorded 5.75 feet November 15. 1900-1915: Maximum stage recorded, 38.8 feet March 28, 1913; minimum stage recorded, 2.0 feet March 9-18, 1907, and January 3-17, 1910. ¹ See U. S. Geol. Survey Water-Supply Paper 200, Daily gage height, in feet, of Indian Lake Reservoir near Indian Lake, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------------------|---|----------------------------------|--|---|--|---|---|--|---|--|---|--| | 1
2
3
4 | 16. 5
16. 2
15. 85
15. 5
15. 15 | 8.3
8.05
7.8
7.6
7.4 | 9.3
9.6
10.0
410.3
10.55 | 11. 4
11. 3
11. 15
10. 95
10. 85 | 15. 15
15. 2
15. 3
15. 4
15. 5 | 20. 0
20. 2
20. 4
20. 6
20. 75 | 22. 45
22. 5
22. 55
22. 6
22. 7 | 32. 3
32. 55
32. 75
32. 95
33. 1 | 34. 1
34. 1
34. 05
34. 05
34. 0 | 34. 3
34. 4
34. 45
34. 45
34. 5 | 34. 35
34. 35
34. 3
34. 35
34. 35 | 34.85
34.8
34.7
34.7
34.65 | | 6 | 14.75 | 7.2 | 10.7 | 10.65 | 15.6 | 20.85 | 22.75 | 33. 2 | 34.0 | 34. 6 | 34.4 | 34.65 | | | 14.5 | 7.0 | 10.85 | 10.7 | 15.7 | 21.0 | 22.8 | 33. 3 | 34.0 | 34. 6 | 34.45 | 34.6 | | | 14.25 | 6.8 | 10.95 | 11.1 | 15.8 | 21.15 | 22.9 | 33. 5 | 33.95 | 34. 85 | 34.5 | 34.55 | | | 13.95 | 6.6 | 11.1 | 11.45 | 15.85 | 21.25 | 23.05 | 33. 65 | 33.95 | 35. 3 | 34.5 | 34.55 | | | 13.65 | 6.45 | 11.2 | 11.65 | 15.9 | 21.35 | 23.35 | 33. 75 | 33.9 | 35. 4 | 34.5 | 34.55 | | 11 | 13. 35 | 6.3 | 11.3 | 11.8 | 15. 95 | 21.40 | 24. 15 | 33. 8 | 33. 9 | 35. 35 | 34.5 | 34. 45 | | | 12. 95 | 6.15 | 11.35 | 11.95 | 16. 0 | 21.4 | 25. 45 | 33. 85 | 33. 95 | 35. 3 | 34.45 | 34. 45 | | | 12. 65 | 6.0 | 11.4 | 12.05 | 16. 05 | 21.45 | 26. 35 | 33. 9 | 33. 95 | 35. 2 | 34.45 | 34. 4 | | | 12. 4 | 5.9 | 11.45 | 12.25 | 16. 1 | 21.5 | 26. 95 | 33. 75 | 33. 95 | 35. 25 | 34.4 | 34. 4 | | | 12. 15 | 5.75 | 11.45 | 12.35 | 16. 25 | 21.5 | 27. 45 | 33. 8 | 34. 0 | 35. 2 | 34.35 | 34. 35 | | 16 | 11.9 | 6.1 | 11.5 | 12.45 | 16.45 | 21.55 | 27.8 | 33. 85 | 34. 1 | 35. 15 | 34. 35 | 34. 3 | | | 11.65 | 6.55 | 11.55 | 12.55 | 16.65 | 21.6 | 28.25 | 33. 9 | 34. 15 | 35. 05 | 34. 3 | 34. 25 | | | 11.4 | 7.1 | 11.6 | 12.7 | 16.85 | 21.65 | 28.75 | 33. 95 | 34. 2 | 35. 0 | 34. 25 | 34. 25 | | | 11.3 | 7.45 | 11.45 | 12.95 | 17.0 | 21.7 | 29.3 | 33. 95 | 34. 2 | 34. 9 | 34. 25 | 34. 2 | | | 11.15 | 7.7 | 11.25 | 13.45 | 17.1 | 21.75 | 29.7 | 33. 95 | 34. 2 | 34. 8 | 34. 2 | 34. 2 | | 21 | 10.95 | 7.95 | 11. 0 | 13.7 | 17. 2 | 21.8 | 30. 1 | 34.0 | 34. 15 | 34.7 | 34. 2 | 34. 1 | | | 10.7 | 8.1 | 10. 85 | 14.0 | 17. 3 | 21.9 | 30. 5 | 34.05 | 34. 15 | 34.65 | 34. 5 | 34. 0 | | | 10.45 | 8.2 | 10. 7 | 14.35 | 17. 45 | 22.0 | 30. 7 | 34.05 | 34. 1 | 34.6 | 35. 55 | 33. 9 | | | 10.2 | 8.35 | 10. 75 | 14.75 | 17. 6 | 22.05 | 30. 95 | 34.1 | 34. 1 | 34.55 | 35. 85 | 33. 75 | | | 9.95 | 8.5 | 10. 9 | 14.8 | 18. 3 | 22.1 | 31. 15 | 34.15 | 34. 1 | 34.55 | 85. 9 | 33. 55 | | 26 | 9.65
9.4
9.2
9.0
8.8
8.55 |
8.6
8.7
8.8
8.9
9.15 | 11.0
11.1
11.15
11.3
11.35
11.4 | 14.9
14.95
14.95
15.0
15.05
15.1 | 18.95
19.45
19.8 | 22. 2
22. 25
22. 3
22. 35
22. 35
22. 4 | 31.35
31.55
31.7
31.9
32.05 | 34. 15
34. 15
34. 15
34. 15
34. 1
34. 1 | 34. 05
34. 05
34. 05
34. 05
34. 1 | 34. 45
34. 4
34. 4
34. 5
34. 45
34. 4 | 35.75
35.55
35.4
35.25
35.15
34.95 | 33. 45
33. 35
33. 25
33. 15
33. 05 | Gate openings, in feet, of Indian Lake Reservoir near Indian Lake, N. Y., for year ending Sept. 30, 1915. | Date. | Sluice
gate A
open. | Sluice
gate B
open. | Date. | Sluice
gate A
open. | Sluice
gate B
open. | |---|---------------------------|---------------------------|--|---------------------------|---------------------------| | Oct. 1-Nov. 15, inclusive
Dec. 18-22, inclusive
Jan. 2-7, inclusive | 2.0 | Feet. 5. 0 5. 0 5. 0 | May 13–14, inclusive
Sept. 20–30, inclusive | Feet.
5.0
2.5 | Feet. 5.0 | ### INDIAN RIVER NEAR INDIAN LAKE, N. Y. LOCATION.—About three-quarters of a mile below the dam at the outlet of Indian Lake, 1 mile above Big Brook, 2 miles south of Indian Lake village, Hamilton County, and 6½ miles above the mouth. DRAINAGE AREA.—132 square miles. RECORDS AVAILABLE.—July 1, 1912, to June 30, 1914; June 5 to September 30, 1915; also miscellaneous measurements in 1911. Data also in annual reports of State engineer and surveyor and State of New York Conservation Commission. GAGE.—Vertical staff on right bank in a pool about 150 feet above the rapids which form the control; read twice weekly by Lester Sevarie. DISCHARGE MEASUREMENTS.—Made from a cable about 75 feet below the gage, or by wading. CHANNEL AND CONTROL.—Rough and rocky; practically permanent. EXTREMES OF DISCHARGE.—1912-1915: Maximum stage recorded, 7.8 feet at 4 p. m. March 28, 1913 (discharge approximately 3,460 second-feet); practically no flow when gates at Indian Lake are closed. Winter frow. Because of the proximity of the reservoir discharge relation is not seriously affected by ice. REGULATION.—Flow controlled by storage in Indian Lake. Results not corrected for storage. Accuracy.—Rating curve well defined; results excellent except at extreme low stages and on days when changes are made in the outlet gates of the reservoir. Discharge measurements of Indian River near Indian Lake, N. Y.; during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | -Date. | Made by— | Gage
height. | Dis-
charge. | |---------|--------------|-----------------|-----------------|--------|----------------|-----------------|-----------------| | Oct. 20 | C. H. Pierce | Feet.
1.72 | Secft. | Stme 5 | O. W. Hartwell | Feet.
1.08 | Secft.
76 | Daily discharge, in second-feet, of Indian River near Indian Lake, N. Y., for the year ending Sept. 30, 1915. | ம Day. | June. | July. | 'Aug. | Sept. | Day. | Juné. | July. | Aug. | Sept. | |---------------|-------|-------|-------|-------|----------------|-------|-------|---|-------| | 1 | | | 212 | 287 | 16 | 86 | | | | | 3 | | 168 | 212 | g. | 18
19 | | 418 | 113 | 15 | | 5 | 77 | ., | | 224 | 20 | 101 | | | | | 6
7 | | 237 | | | 21
22 | | 237 | 224 | 40 | | 8
9
10 | 74 | | 224 | 200 | 23
24
25 | 97 | 224 | 250 | | | .v | | 453 | - 224 | | 26. | | 224 | 200 | 38 | | 12
13 | 77 | | | 189 | 27
28 | 97 | 212 | | | | 14 | | 418 | 122 | 158 | 29.
30. | 158 | | 250 | 38 | | | | | | 140 | 31 | | ····· | • | ••••• | Note.-Discharge determined from a well-defined rating curve. ## SCHROON RIVER AT RIVERBANK, N. Y. Location.—At highway bridge at Riverbank post office, Warren County, a mile below Tumblehead Falls, 3‡ miles below outlet of Brant Lake, 9 miles below Schroon Lake, and about 9 miles north of Warrensburg. Drainage area.—534 square miles. RECORDS AVAILABLE.—September 2, 1907, to September 30, 1915. Data published also in annual reports of State engineer and surveyor, and State of New York Conservation Commission. GAGE.—Chain on bridge, read twice daily by J. H. Roberts. DISCHARGE MEASUREMENTS.—Made from the bridge. CHANNEL AND CONTROL.—Gravel; smooth and somewhat shifting. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 4.7 feet at 5 p. m. April 15 (discharge, 2,260 second-feet) minimum stage recorded, 1.30 feet November 1, 7, 10, and 12 (discharge, 99 second-feet). Maximum stage recorded 1907-1915: 10.7 feet at 5 p. m. March 28, 1913 (discharge, approximately 13,500 second-feet); minimum stage recorded, 0.85 foot at 5 p. m. October 17, 1909 (discharge, 28 second-feet). WINTER FLOW.—Discharge relation affected by ice. REGULATION.—Flow affected by storage in Schroon and Brant lakes. Accuracy.—Results good except for winter and periods in which log jams occur. Discharge measurements of Schroon River at Riverbank, N. Y., during the year ending Sept. 30, 1015. | Date. | Made by | Gage
height, | Dis-
charge. | Date. | Made by | Gage
height. | Dis-
charge. | |--|-----------------|---|--|------------------------------------|---|--------------------------------|--------------------------------| | Oct. 9
Jan. 12
28
Feb. 11
20
20 | C. S. De Golyer | Feet. 1.63 a 2.76 a 2.88 2.50 2.79 2.62 | Secft.
184
389
615
540
568
567 | Mar. 25
25
Apr. 16
June 3 | R. M. Adamsdo | Feet. 2.98 3.00 4.60 4.60 1.86 | Secft. 796 790 2,030 2,010 286 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Schroon River at Riverbank, N. Y., for the year ending Sept. 30, 1915. | • | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |----------------------|------|--|-----------------------------------|---------------------------------|--|-----------------------------------|---|---|--|---------------------------------|---|--|---------------------------------| | 2
3
4 | | 230
200
200
172
186 | 99
126
119
121
117 | 262
279
351
351
370 | | 518
495
472
472
585 | 2,040
2,150
2,040
1,940
1,840 | 690
662
690
635
635 | 990
920
920
920
920 | 298
264
298
298
298 | 1,060
690
800
535
990 | 610
635
635
635
662 | 560
490
333
298
298 | | 7
8
9 | | 186
172
186
186
186 | 131
110
119
117
110 | 314
332
351
351
332 | | 610
610
585
560
535 | 1,640
1,550
1,370
1,290
1,210 | 662
662
718
800
890 | 920
800
662
447
468 | 316
298
316
298
298 | 1,130
1,210
1,460
1,460
1,640 | 635
635
690
745
745 | 298
298
298
316
298 | | 12
13
14 | | 159
172
159
159
146 | 112
110
126
126
186 | 314
314
314
296 | 332
389
390
410
472 | 535
512
490
468
490 | 1,130
1,130
1,130
1,060
1,060 | 1,130
1,550
1,940
2,040
2,150 | 560
535
560
512
512 | 298
316
281
298
298 | 1,550
1,550
1,460
1,460
1,460 | 745
745
718
635
585 | 316
298
298
316
298 | | 17
18
19 | | 159
146
146
159
172 | 200
200
200
200
215 | | 518
590
590
640
695 | 535
560
580
585
545 | 1,060
1,060
990
920
920 | 2,150
1,940
1,640
1,640
1,550 | 468
490
468
468
490 | 316
264
264
316
248 | 1,370
1,210
860
920
860 | 535
490
298
264
264 | 298
298
298
298
264 | | 22
23
24 | | 159
146
159
159
136 | . 215
200
230
215
200 | | 668
640
640
695
668 | 560
535
535
560
1,130 | 800
800
800
800
800 | 1,550
1,370
1,370
1,290
1,130 | 512
490
468
490
468 | 316
535
264
388
298 | 860
920
920
920
860 | 264
264
351
407
690 | 447
560
535
512
490 | | 27
28
29
30 | | 159
138
144
134
136
136 | 200
230
230
262
246 | | 640
668
615
518
495
518 |
1,210
1,370
1,840 | 800
718
745
745
690
690 | 1,210
1,060
1,060
990
990 | 490
490
468
468
407
316 | 298
264
298
635
369 | 920
860
869
490
662
635 | 800
800
745
718
718
662 | 447
447
427
407
407 | Note.—Discharge determined from two fairly well-defined rating curves, applicable Oct. 1 to Dec. 14 and Feb. 5 to Sept. 30. Discharge relation affected by ice Nov. 21 to 24 and Dec. 15 to Feb. 4, inclusive; discharge as given only approximate; mean discharge Dec. 15-31 estimated at 236 second-feet, and Jan. 1-10 at 219 second-feet, Monthly discharge of Schroon River at Riverbank, N. Y., for the year ending Sept. 30, 1915. # [Drainage area, 534 square miles.] | | D | Run-off | , | | | | |--|---|---|--|---|--|----------------------------------| | Month. | Maximum. | Minimum. | Mesn. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June June July August September | 262
370
695
1, 840
2, 150
2, 150
990
635
1, 640
800
560 | 136
99
468
690
635
316
248
369
264
264 | 164
169
276
451
660
1,160
1,230
584
318
1,040
591
372 | 0.307
.317
.517
.544
1.24
2.17
2.30
1.10
.596
1.95
1.11 | 0.35
.35
.60
.97
1.29
2.50
2.57
1.27
.66
2.25
1.28 | B. B. C. B. B. A. A. A. A. A. A. | | The year | 2,150 | 99 | 584 | 1, 09 | 14.87 | | Note.—The monthly discharge in second-feet per square mile and the run-off depth in inches shown by the table do not represent the natural flow from the basin because of artificial storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. #### SACANDAGA RIVER NEAR HOPE, N. Y. Location.—About 1½ miles below junction of East and West branches, 3½ miles above post office at Hope, Hamilton County, 4 miles below Wells, and 12 miles above Northyille. Drainage area.—494 square miles (measured on topographic maps). RECORDS AVAILABLE.—September 15, 1911, to September 30, 1915. Data also in annual reports of State engineer and surveyor and State of New York Conservation Commission. GAGE.—Staff in two sections, the lower inclined, the upper vertical; read twice daily by Melvin Willis. DISCHARGE MEASUREMENTS.—Made from cable or by wading. CHANNEL AND CONTROL.—Rocky; practically permanent. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 7.1 feet at 9 a.m. April 12 (discharge, 9,900 second-feet); minimum stage recorded, 1.55 feet from 6 p. m. October 14 to 8 a. m. October 17 (discharge, 74 second-feet). 1911-1915: Maximum stage recorded, 10.0 feet at 5.30 p. m. March 27, 1913 (discharge, 24,800 second-feet); minimum stage recorded, 1.17 feet at 7.55 a. m. September 20, 1915 (discharge, 20 second-feet). WINTER FLOW.—Discharge relation affected by ice. Accuracy.—Results good for open-water season. Discharge measurements of Sacandaga River near Hope, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by- | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height, | Dis-
charge. | |---------------|-------------------|-----------------------|--------------------------|--------|----------------|-----------------|-----------------| | Jan. 20
20 | C. S. De Golyerdo | Feet.
4.62
4.56 | Secft.
2,910
2,820 | June 4 | E. D. Burchard | Feet.
2.57 | Secft.
506 | Daily discharge, in second-feet, of Sacandaga River near Hope, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |-----------------------|---------------------------------|--|---|-------------------------|----------------------------|---|---|--|---------------------------------|---|--|---------------------------------| | 1
2
3
4
5 | 116
116
111
104
104 | 116
116
116
116
116
147 | 865
1,440
1,680
1,330
1,010 | 1 | | 1,940
1,680
1,560
1,440
1,330 | 495
525
495
525
525 | 1,680
1,680
1,940
1,680
1,940 | 865
910
740
438
255 | 2,930
1,680
1,440
1,280
1,560 | 454
421
421
1,060
1,160 | 780
660
590
495
454 | | 6 | 91
91
91
91 | 154
147
147
147
147 | 1,010
780
740
590
590 | | | 1,220
1,010
910
910
820 | 525
660
1,160
1,680
3,760 | 1,680
1,330
1,220
1,060
1,010 | 242
221
221
202
190 | 1,560
1,220
2,560
4,230
2,560 | 960
960
1,110
1,010
910 | 400
380
365
360
360 | | 11 | 91
91
87 | 147
182
190
287
465 | 525
400
438
454
410 | | .' | 780
740
660
590
590 | 7,530
8,830
5,990
4,990
4,230 | 910
740
820
740
820 | 190
230
221
221
410 | 1,940
1,560
1,560
1,440
1,110 | 820
740
660
558
495 | 350
330
335
400
385 | | 16 | 116 | 2,390
1,680
960
1,010
910 | | | | 660
660
590
558
525 | 4,230
3,990
3,330
2,230
2,230 | 865
910
3,540
1,810
1,010 | 400
350
301
242
350 | 910
780
740
700
660 | 525
525
410
370
320 | 454
421
350
320
310 | | 21 | 230.
190 | 780
- 660
558
465
525 | | 1,680
1,560
1,440 | 5, 790 | 495
495
525
590
740 | 1,940
2,080
2,230
1,560
1,160 | 1,110
1,220
1,010
1,440
1,440 | 301
255
242
242
221 | 590
495
438
410
400 | 301
2,560
5,790
3,760
3,130 | 400
421
400
350
301 | | 26 | 147
147 | 525
1,010
1,220
910
780 | | 1,010
910
700 | 4, 480
3, 540
2, 390 | 660
660
590
590
590
454 | 1,010
865
820
1,220
1,280 | 1,330
1,110
820
590
410
360 | 186
182
182
182
221 | 465
1.110
700
740
660
590 | 2,230
1,810
1,440
1,160
1,010
910 | 310
454
400
350
320 | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice Dec. 16 to Jan. 18 and Jan. 31 to Feb. 24, discharge estimated from records at other stations as follows: Dec. 16-31, 290 second-leet, Jan. 1-18, 630 second-feet. Feb. 1-24, 950 second-feet. These data supersede those published in the 1915 Annual Report of the State engineer and surveyor. # Monthly discharge of Sacandaga River near Hope, N. Y., for the year ending Sept. 30, 1915. ## [Drainage area, 494 square miles.] | | . D | ischarge in se | econd-feet. | | Run-off | | |---|--|--|--|--|--|----------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile, | (depth in
inches on
drainage:
area). | Accu-
racy. | | October November December January February March April May June July August September | 2,390
1,680
3,540
5,790
1,940
8,830
3,540
865
4,230
5,790 | 81
116
1 454
495
380
182
400
301
301 | 138
567
545
996
1,340
825
2,370
1,230
314
1,260
1,230
407 | 0. 279 1. 15 1. 10 2. 02 2. 71 1. 67 4. 80 2. 49 638 2. 55 2. 49 824 | 0. 32
1. 28
1. 27
2. 33
2. 82
1. 92
5. 36
2. 87
. 71
2. 94
2. 87 | A. B. A. A. B. A. B. | | The years. | 8,830 | 81 | 936 | 1. 89 | 25. 61 | 1 | #### SACANDAGA RIVER AT HADLEY, N. Y. LOCATION.—About half a mile west of railroad station at Hadley, Saratoga County, a mile above mouth of river, and 4½ miles below site of proposed storage dam at Conklingsville. Drainage area.—1,060 square miles (measured on topographic maps). RECORDS AVAILABLE.—January 1, 1911, to September 30, 1915; September 13, 1907, to December 31, 1910, at upper bridge station; September 24, 1909, to midsummer of 1911, at lower bridge station. Data also in annual reports of State engineer and surveyor and State of New York Conservation Commission. GAGE.—Barrett & Lawrence water-stage recorder referred to datum by a hook gage inside the well; vertical staff gage for auxiliary readings. Recorder inspected by J. F. Kelley. DISCHARGE MEASUREMENTS.—Made from a cable about 30 feet above gage or by wading about three-fourths mile above gage. EXTREMES OF DISCHARGE.—Maximum stage during year, from water-stage recorder, 8.2 feet from 4 to 8 p. m. April 13 (discharge, 11,300 second-feet); minimum stage, from water-stage recorder, 2.57 feet at 10 a. m. October 11 (discharge, 165 second-feet). 1911-1915: Maximum stage, from water-stage recorder, 12.36 feet
from 11 a.m. to 12 m. March 28, 1913 (discharge, approximately 35,500 second-feet); minimum stage, from water-stage recorder, 2.25 feet all day September 16, 1913 (discharge 61 second-feet). WINTER FLOW.—Discharge relation seriously affected by ice. Accuracy.—Results good. Discharge measurements of Sacandaga River at Hadley, N. Y., during the year ending Sept. 30, 1915. [Made by C. S. De Golyer.] | | Date. | Gage
height. | Dis-
charge. | | Date. | Gage
height, | Dis-
charge. | |-------------------|-------|-------------------------|----------------------|------|-------|-------------------------|--------------------------| | Oct. 8
Dec. 26 | | Feet.
2.64
a 5.18 | Secft.
200
484 | Jan. | 8 | Feet.
a 5.32
4.47 | Secft.
1,480
1,720 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Sacandaga River at Hadley, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------------------|--|---------------------------------|---|---|---|--|---|--|---------------------------------|--|--|---| | 1
2
3
4 | 218 | 350
350
350
344
344 | 1,250
1,290
1,980
2,370
1,980 | | 1,180
1,230
1,630 | 6,120
5,330
4,600
3,790
3,270 | 1,400
1,400
1,410
1,410
1,460 | 1,980
2,370
2,460
2,370
2,130 | 660
830
830
754
622 | 1,670
3,900
3,900
3,790
3,470 | 1,250
1,040
1,010
1,730
3,680 | 1,630
1,360
1,180
1,020
882 | | 6 | 184
197
184
172
168 | 344
350
361
378
383 | 1,600
1,080
1,060
1,010
996 | 1,480
2,710
2,370 | 1,360
1,380
1,380
1,370
1,330 | 2,800
2,540
2,210
1,900
1,760 | 1,580
1,760
2,130
3,080
4,360 | 2,050
1,720
1,710
1,700
1,500 | 493
424
407
389
355 | 3,580
3,370
3,470
5,720
7,130 | 4,020
3,790
4,020
4,240
3,680 | 795
738
698
698
738 | | 11 | 168
172
176
176
176 | 383
383
378
383
418 | 873
698
601
526 | 2,130
1,900
1,760
1,630
1,500 | 1,270
1,130
1,200
1,190
1,290 | | 6,690
9,160
10,900
10,600
8,820 | 1,490
1,320
1,130
1,110
1,090 | 334
334
361
366
378 | 6,840
5,850
4,840
4,130
3,580 | 2,890
2,290
1,900
1,580
1,460 | 698
630
594
645
976 | | 16 | 180
197
227
317
486 | 2,800
2,370
1,360 | | 1,220
1,630
3,180 | 2,290
3,270
3,370
3,270
3,080 | 1,470
1,440
1,400
1,340
1,320 | 7,280
6,400
5,720
5,080
4,600 | 1,190
1,080
1,270
1,730
1,430 | 608
630
580
545
532 | 2,710
2,050
1,670
1,410
1,200 | 1,320
1,220
1,130
1,010
847 | 1,300
1,360
1,220
1,010
847 | | 21 | 637
594
526
493
461 | 1,080
1,020
892 | | 4,480
4,130 | 2,710
2,370
2,050
2,210
4,720 | 1,350
1,370
1,410
1,620
2,050 | 4,130
3,680
3,180
2,800
2,370 | 1,460
1,540
1,560
1,430
1,430 | 545
545
486
467
443 | 1,060
910
821
787
762 | 722
1,290
5,590
6,980
6,980 | 804
976
956
847
778 | | 26 | 430
378
366
361
355
355 | 910
1,270
1,580 | | 2,210
1,900
1,600 | 6, 120
6, 980
6, 980 | 2,290
2,050
2,050
1,900
1,620
1,380 | 1,900
1,830
1,540
1,560
1,830 | 1,340
1,280
1,160
1,120
996
746 | 412
395
395
401
519 | 778
1,410
1,900
1,700
1,600
1,500 | 6,540
5,690
4,480
3,370
2,540
2,050 | 730
778
892
864
795 | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice Dec. 15 to Jan;-8; mean discharge Dec. 15-31, estimated at 428 second-feet; Jan. 1-7, 347 second-feet. Monthly discharge of Sacandaga River at Hadley, N. Y., for the year ending Sept. 30, 1915. [Drainage area, 1,060 square miles.] | | D | ischarge in s | econd-feet. | | Run-off | | |---|---|---|--|---|---|-------------------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June July August September | 2,800
2,370
4,480
6,980
6,120
10,900
2,460
830
7,130
6,980 | 168
344
1,130
1,320
1,400
746
334
762
722
722
594 | 297
826
794
1,940
2,470
2,190
4,000
1,510
501
2,820
2,910
915 | 0.280
.779
.749
1.83
2.33
2.07
3.77
1.42
.473
2.66
2.75 | 0.32
.87
.86
2.11
2.43
2.39
4.21
1.64
.53
3.07
3.17 | A. A. C. C. B. A. A. A. A. A. A. A. | | The year | 10,900 | 168 | 1,760 | 1.66 | 22.56 | , | WEST BRANCH OF SACANDAGA RIVER AT BLACKBRIDGE, NEAR WELLS, N. Y. Location.—At highway bridge known as Blackbridge, 2 miles above junction of east and west branches of Sacandaga River and about 3 miles west of Wells, Hamilton County. Drainage area.—211 square miles (measured on topographic maps). RECORDS AVAILABLE.—March 14, 1911, to September 30, 1915. Date also in annual reports of State engineer and surveyor and State of New York Conservation Commission. GAGE.—Chain on upstream side of bridge, read twice daily by Cornelius De Groff. DISCHARGE MEASUREMENTS.—Made from the bridge or by wading. CHANNEL AND CONTROL.—Rocky; slightly shifting during floods. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 7.5 feet at 8 a.m. and 4 p. m. April 12 (discharge 3,080 second-feet); minimum stage recorded, 2.45 feet at 8 a.m. and 4 p. m. October 13-15 (discharge, 40 second-feet). 1911-1915: Maximum stage recorded 11.5 feet at 4 p. m. March 27, 1913 (discharge, about 29,000 second-feet); minimum stage recorded, 2.30 feet September 17 and 21, 1913 (discharge, 3 second-feet). WINTER-FLOW.—Discharge relation affected by ice for short periods. REGULATION.—Flow slightly affected by storage dams used for logging in spring. Accuracy.—Results good. Discharge measurements of West Branch of Sacandaga River at Blackbridge, near Wells, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by- | Gage
height. | Dis-
charge. | Date. | Made by∙— | Gage
height. | Dis-
charge. | |------------------------------|--------------|---------------------------|---------------------------------------|------------------------------|--|---------------------------|--------------------------------------| | Oct. 14
Dec. 4
Jan. 19 | R. S. Barnes | Feet. 2.52 4.75 6.03 5.99 | Secft.
43
689
1,610
1,560 | Jan. 21
June 3
Sept. 4 | C. S. De Golyer E. D. Burchard do C. C. Covert | Feet. 5.34 4.02 3.90 3.75 | Secft.
1,060
318
293
240 | Daily discharge, in second-feet, of West Branch of Sacandaga River at Blackbridge, near Wells, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |----------------------------|----------------------------------|---------------------------------|---------------------------------|--|--|--|---|--|---------------------------------|---|--|---------------------------------| | 1 | 50
48
47
48
47 | 56
56
53
56
64 | 405
660
775
715
605 | | 308
290
255
240
255 | 965
715
660
550
550 | 147
152
126
197
171 | 660
775
660
660
578 | 550
290
345
325
111 | 1,260
1,180
775
775
775 | 184
171
143
450
525 | 365
308
272
225
197 | | 6
7
8
9 | 46
42
43
42
42 | 79
70
74
74
60 | 500
405
365
325
225 | | 290
225
255
225
225
197 | 500
450
365
428
325 | 211
197
290
605
1,100 | 550
450
500
450
385 | 77
66
44
42
43 | 1,040
715
1,420
1,660
1,500 | 450
450
525
500
450 | 197
171
184
197
171 | | 11 | 44
43
40
40
40 | 68
68
68
159
136 | 225
197
197
171
130 | | 197
171
171
152
450 | 290
255
225
197
197 | 1,580
3,080
2,430
1,580
1,580 | 365
325
290
255
240 | 56
95
68
62
77 | 775
745
715
632
605 | 475
405
365
345
775 | 152
130
143
147
111 | | 16 | 42
60
126
159
159 | 805
900
550
500
550 | ,166
147
126 | 1,580
1,340 | 900
715
605
550
500 | 171
171
166
147
136 |
1,760
1,580
1,420
1,180
1,180 | 197
290
835
345
605 | 82
111
95
79
100 | 955
405
325
290
255 | 255
225
197
166
147 | 225
197
184
152
171 | | 21
22
23
24
25 | 136
126
95
79
74 | 325
385
325
290
255 | | 1,100
805
775
688
605 | 450
405
405
450
1,580 | 171
171
171
147
225 | 1,100
835
775
660
525 | 835
835
775
688
660 | 95
86
82
68
70 | 225
225
197
197
171 | 130
1,940
1,940
1,760
1,420 | 197
225
171
159
130 | | 26 | 68
64
60
56
60
64 | 255
385
450
365
365 | | 525
526
500
365
325
325 | 1,660
1,420
1,260 | 240
225
225
197
171
171 | 450
405
405
578
605 | 550
550
405
405
152
126 | 62
60
107
104
70 | 225
459
325
290
290
130 | 1,340
1,180
775
500
500
405 | 147
197
171
197
143 | Note.—Discharge determined from two fairly well defined rating curves applicable Oct. 1 to Mar. 31 and Apr. 1 to Sept. 30. Discharge relation estimated from records at Hadley as follows: Dec. 19-31, 142 second-feet; Jan. 1-18, 307 second-feet. # Monthly discharge of West Branch of Sacandaga River at Blackbridge, near Wells, N. Y., for the year ending September 30, 1915. [Drainage area, 211 square miles.] | | D | ischarge in se | econd-feet. | ٠. | Run-off | ŀ | |---|---------------------|-------------------|---------------------------|-------------------------------|--|----------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area): | Accu
racy. | | October
November
December.
January | 900 -
775 | 40
53 | 67.4
262
264
483 | 0.319
1.24
1.25
2.29 | 0.37
1.38
1.44
2.64 | B.
B.
C.
D. | | February
March
April | 1,660
965 | 152
136
126 | 521
309
897 | 2.47
1.46
4.25 | 2.57
1.68
4.74 | С.
В.
С. | | May
Iune
Iuly | 835
550
1,660 | 126
42
130 | 497
118
630 | 2.36
.559
2.99 | 2.72
.62
3.45 | В.
С.
В. | | August
September | 1,940
365 | 130
111 | 616
188 | 2.92
.891 | 3.37
.99 | B.
C. | ## HOOSIC RIVER NEAR EAGLE BRIDGE, N. Y. LOCATION.—Half a mile below Walloomsac River and 1½ miles above Owl Kill and Eagle Bridge, Rensselaer County. DRAINAGE AREA. -512 square miles (measured on topographic maps). RECORDS AVAILABLE.—August 13, 1910, to September 30, 1915; September 25, 1903, to December 31, 1908, at Buskirk, 4 miles below present station. Data also in annual reports of State engineer and surveyor and State of New York Conservation Commission. GAGE.—Inclined staff on left bank; prior to August 17, 1914, chain gage 400 feet above present site; temporary chain gage, May 22 to August 16, 1914. Read twice daily by Mrs. Vashti Russell. DISCHARGE MEASUREMENTS.—Made from cable half a mile below gage or by wading. Channel and control.—Gravel; somewhat shifting. EXTREMES OF DISCHARGE.—Maximum stage recorded during the year, 13.5 feet at 7.30 a. m. July 9 (approximate discharge, 16,700 second-feet); minimum stage recorded, 2.48 feet at 7.30 a. m. December 12 (approximate discharge, 35 second-feet). 1910-1915: Maximum stage not recorded, as gage used prior to August 17, 1914, could not be reached at high stages; minimum stage recorded, 6.1 feet at 5 p. m. September 14, 1913 (discharge, practically zero). WINTER FLOW .- Discharge relation affected by ice. REGULATION.—Flow affected by storage on Walloomsac River and at Hoosic Falls, about 2 miles above gage. Accuracy,—Results fair. Estimates of low discharge may be somewhat in error because of regulation. Discharge measurements of Hoosic River near Eagle Bridge, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |-------------------------------|--------------|---|------------------------------------|---------|--|----------------------------------|-------------------------------| | Oct. 4
Jan. 16
19
27 | R. S. Barnes | Feet.
2.90
3.60
7.23
a 4.40 | Secft
79
319
3,800
475 | Mar. 22 | R. M. Adams
R. S. Barbes.
H. W. Fear | Feet.
4, 41
4, 01
5, 04 | Secft.
686
433
1,210 | Daily discharge, in second-feet, of Hoosic River near Eagle Bridge, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |------|--------------------------------------|---------------------------------|---------------------------------------|---|---|---|---|--|-----------------------------------|--|--|-----------------------------------| | 1 | 162
150
130
69
120 | 59
94
102
120
140 | 173
186
212
150
198 | -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- | 810
1,300
1,210
1,120
1,000 | 1,590
1,390
1,260
1,000
960 | 515
515
515
515
515
545 | 880
960
1,000
775
810 | 375
1 285
305
230
265 | 430
845
1,080
880
670 | 458
575
485
1,040
3,200 | 458
430
458
375
325 | | 6 | 140
120
94
111
94 | 140
94
56
150
140 | 86
162
173
173
198 | 6, 050
3, 200
705
458 | 1,900
1,900
960
670
515 | 845
845
920
705
705 | 705
880
845
920
1,490 | 740
775
775
775
775
775 | 285
215
172
172
265 | 810
545
2,580
12,500
3,200 | 1,490
1,210
375
960
740 | 305
402
325
350
265 | | 11 | 43
74
140
140
120 | 130
150
162
72
82 | 130
94
79
198 | 485
375
1,490
880
485 | 430
515
880
880
5,090 | 670
670
605
605
670 | 5,410
4,470
3,200
2,120
1,790 | 638
515
545
575
545 | 172
172
130
160
285 | 1,790
1,790
1,120
880
705 | 638
605
575
605
485 | 285
160
230
1,040
575 | | 16 | 120
120
130
140
162 | 244
455
198
198
173 | · · · · · · · · · · · · · · · · · · · | 430
458
2,340
3,880
2,230 | 4,390
1,790
1,160
1,000
880 | 688
575
545
545
515 | 1,690
1,590
1,300
1,590
1,160 | 402
485
545
458
485 | 200
230
200
265
123 | 638
575
605
5 545
880 | 605
638
575
875
430 | 325
375
373
265
305 | | 21 | 150
130
130
120
82 | 173
91
150
212
162 | | 1,080
740
458
1,300
810 | 845
845
810
1,300
8,640 | 485
575
575
670
705 | 1,000
880
810
705
705 | 350
430
430
265
430 | 245
215
185
200
172 | 638
638
638
515
375 | 430
325
1,490
845
1,160 | 305
705
545
430
430 | | 26 | 94
130
130
130
130
94 | 150
162
212
130
173 | | 575
545
430
402
325
245 | 4,470
2,340
1,900 | 960
670
605
670
605
515 | 670
638
638
810
1,000 | 325
458
430
402
265
265 | 215
95
185
215
245 | 810
2,010
1,080
740
740
485 | 960
740
575
458
605
575 | 305
880
575
430
402 | Note.—Discharged determined from two fairly well defined rating curves, applicable Oct. 1 to Dec. 14 and Jan. 7 to Sept. 30. Discharge relation affected by ice Dec. 15 to Jan. 6 and Jan. 21 to Feb. 12, and probably during a period in March; estimates Jan. 21 to Feb. 12 approximate; mean discharge Dec. 45 to Jan. 6 derived from power-plant records at Johnsonville and Schaghtlicoke as follows: Dec. 16-21, 141 second-lest; Jan. 1-6, 215 second-lest. Monthly discharge of Hoosic River near Eagle Bridge, N. Y., for the year ending Sept. 30, 1915. ## [Drainage area, 512 square miles.] | • | D | ischarge in s | econd-feet | | Run-off | L E | |------------------------------|----------------|-------------------------|--------------------------------|------------------------------|--|----------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October
November | 455 | 43
56 | 119
152
149 | 0. 232
. 297
291 | 0.27
.33
.34 | B.
C.
C. | | January
February
March | 8,640
1,590 | 430
485 | 1,020
1,070
1,770
751 | 1.99
3.46
1.47 | 2.29
3.56
1.70 | C. | | April
May
June
July | 1,000-
875 | 515
265
95
375 | 1,320
565
216
1,350 | 2.58
1.10
.422
2.64 | 2.88
1.27
.47
3.04 | C.
B.
C. | | August
September | 3,200 | 325
160 | 782
421 | 1.53
.822 | 1.7 6
.92 | B. | | The year | 12,500 | 43 | 711 | 1.39 | 18.83 | ì | ## MOHAWK RIVER AT VISCHER FERRY DAM, a NEW YORK. LOCATION.—At the Vischer Ferry dam of the Barge canal, a mile above Stony Creek and Vischer Ferry, about 7 miles below Schenectady and about 11 miles above the mouth. Drainage area. -3,400 square miles (measured on topographic maps). RECORDS AVAILABLE.—June 24, 1913, to September 30, 1915. Data also in annual reports of State engineer and
surveyor and State of New York Conservation Commission. GAGE.—Gurley water-stage recorder (showing head on crest of spillway) in a corner of the basin near upper end of Barge canal lock; inclined staff at foot of an old bridge abutment, about 100 feet above Vischer Ferry, read June 24 to December 16, 1913, and May 24 to June 2, 1914; staff gage in masonry of outer lock wall just above upper gates, read March 30 to May 23, 1914; datum of staff gage 12.15 feet lower than that of recorder. Recorder inspected by engineers from Albany office of U. S. Geol. Survey. DISCHARGE MEASUREMENTS.—Made by wading below dam at low water. No provision for measurements at medium and high stages. CHANNEL AND CONTROL.—At the ferry, coarse gravel; practically permanent; at the dam the control is the crest of the spillway. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 3.7 feet at 8 a. m. July 9 (discharge, 44,600 second-feet); minimum stage recorded, 0.18 foot from 4 a. m. to 5 a. m. and 4 p. m. to 6 p. m., October 31 (discharge, 290 second-feet). 1913-1915: Maximum stage recorded, 7.6 feet just before noon March 28, 1914, determined by leveling from flood marks (discharge estimated by New York State engineer, 140,000 second-feet); this stage lasted but a few moments and was caused by the breaking of an ice jam near Schenectady. DIVERSIONS.—Water was diverted into Erie Canal at temporary lock in north end of dam prior to December, 1914. Measurements of this diversion have been made at Bridge 48 about a mile downstream and are given in a table, but no allowance for this diversion has been made in computing the flow. Barge canal lock No. 7 at south end of dam was put into operation May 15, 1915. The following tables of discharge include the flow over the spillway and through the lock and water wheels. REGULATION.—Flow affected by operation of dams upstream. Accuracy.—Results good for low stages. Discharge measurements of Mohawk River at Vischer Ferry dam, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | |--------|---|------------------------|----------------------| | Oct. 7 | Hartwell, Adams, and Barnes. De Golyer and Barnes. | Feet.
0. 21
. 34 | Secft.
466
904 | Discharge measurements of Eric Canal at Vischers Ferry (Bridge 48), N. Y., during the period Oct. 1 to Nov. 30, 1914. | Date. | Made by | Gage
height,b | Dis-
charge. | Date. | e. Made by— | | Dis-
charge. | |--------|---------------|-------------------------|----------------------|--------------------|---------------------------|-----------------------|----------------------| | Oct. 7 | R. M. Adamsdo | Feet.
1. 67
1. 61 | Secft.
421
327 | Oct. 26
Nov. 25 | R. M. Adams
H. W. Fear | Feet.
1.99
1.20 | Secft.
418
289 | a Published as Mohawk River at Barge Canal Lock 7 in Water-Supply Paper 381. b Distance to water surface from reference point on bridge. Daily discharge, in second-feet, of Mohawk River at Vischer Ferry dam, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sapt. | |----------------------------|-------------------------------------|-----------------------------------|--|--|--|--|--|--|---|--|--|--| | 1 | 440
410
440
470
440 | 440
410
440
440
550 | | 1,850
1,780
1,850
1,850
1,850 | 4,920
5,190
6,700
5,910
5,730 | | 3,840
3,680
3,840
3,680
3,360 | 7,500
8,000
8,000
5,820
4,650 | 1,770
1,580
1,700
3,420
3,420 | 8, 130
14, 900
7, 070
5, 220
6, 080 | 3,380
3,310
6,540
13,500
16,300 | 100 March Ma | | 6
7
8
9
10 | 440
440
510
510
510 | 750
950
710
410
470 | | 1,850
1,850
7,000
8,800
7,700 | 5,910
5,910
7,100
6,700
5,190 | | 4,470
6,000
7,800
8,800
10,800 | 4,560
4,020
4,830
5,010
4,200 | 2,670
2,260
1,110
1,060
1,010 | 5,620
3,810
7,020
43,700
22,500 | 9,000
7,530
6,390
6,730
6,210 | 1,770
1,800
1,640
1,590
2,510 | | 11
12
13
14
15 | 470
410
410
440
440 | 1,000
800
710
850
800 | 1,990
1,280
950 | 6,800
5,820
5,550
5,820
6,500 | 5,010
5,100
5,280
6,400
6,500 | 5, 100
5, 370 | 16,700
22,400
18,200
13,200
11,000 | 3,520
2,130
1,520
3,680
2,020 | 1,060
1,110
1,270
1,910
1,910 | 10,200
8,060
10,200
11,300
11,200 | 5,560
4,640
3,910
3,480
2,550 | 2,800
2,380
2,380
7,910
6,710 | | 16
17
18
19
20 | 590
590
590
1,100
1,710 | 1,100
2,410
2,410 | 3,520
2,340
2,200 | 5,820
4,830
6,000
18,900
24,600 | 19,600
18,900
13,500
9,800
8,300 | 5,370
5,100
4,470
4,020
3,840 | 9,000
7,900
7,700
7,300
7,000 | 2,780
2,300
1,740
2,590
3,550 | 1,910
1,910
1,460
1,280
1,160 | 5,760
3,010
3,310
3,310
3,900 | 3,150
2,930
2,500
2,570
2,290 | 4,390
5,450
4,810
3,390
1,850 | | 21
22
23
24
25 | 1,050
950
800
900
900 | | 1,460
1,280
1,400 | 18,900
12,300
8,000
7,300
7,700 | 7,700
7,500
7,500
10,800
32,400 | 4,200
4,290
4,380
6,100
7,600 | 6,400
6,400
6,000
4,470
4,020 | 2,020
2,440
2,780
3,150
2,670 | 1,980
1,280
1,910
1,910
1,990 | 3,320
3,300
3,330
2,740
2,800 | 2,200
9,610
27,400
10,800
9,580 | 1,440
2,980
4,260
3,310
2,210 | | 26 | 670
800 | | 1,220
1,280
1,400
1,460
1,460
1,850 | 7,300
6,600
6,200
5,820
5,100
4,380 | 34, 100
21, 700
12, 000 | 8,700
7,700
5,820
5,100
4,830
4,380 | 4,200
4,740
4,470
4,380
5,910 | 2,830
2,230
1,880
1,740
2,260
2,160 | 1,980
1,510
1,520
2,040
2,190 | 2,740
8,780
4,220
3,320
3,350
2,780 | 8,760
6,460
5,500
4,570
3,900
3,870 | 3,040
2,850
3,080
2,690
2,700 | Note.—Discharge October to April is flow over the spillway only; from May to Septémber, discharge includes estimated discharge through the lock and water wheels at the lock. Discharge over spillway determined from a fairly well-defined rating curve; mean discharge for November, December, and March estimated. Monthly discharge of Mohawk River at Vischer Ferry dam, N. Y., for the year ending Sept. 30, 1915. [Drainage area, 3,400 square miles.] | | D | | Run-off | | | | |--|---|--|--|---|---|----------------------------| | Month. | Maximum. | Iaximum. Minimum. Mean. Per square mile. | | (depth in
inches on
drainage
area). | Accu-
racy. | | | October November December January. February. March | 24,600
34,100 | 350
410
1,780
4,920
3,840 | 644
1, 150
2, 400
6, 990
10, 400
5, 650 | 0. 189
. 338
. 706
2. 06
3. 06
1. 66 | 0. 22
.38
.81
2. 38
3. 19
1. 91 | B.
D.
D.
C.
B. | | April | 22,
400
8, 000
3, 420
43, 700
27, 400 | 3,360
1,520
1,010
2,740
2,200
1,490 | 7,590
3,500
1,780
7,580
6,620
3,080 | 2.23
1.03
.524
2.23
1.95
.959 | 2. 49
1. 19
. 58
2. 57
2. 25
1. 07 | B.
B.
B.
B. | | The year | 43,700 | 350 | 4,750 | 1.40 | 19.04 | | Note.—The monthly discharge in second-feet per square mile and the run-off depth in inches shown by the table do not represent the natural flow from the basin because of artificial regulation and storage; the yearly discharge and run-off doubtless represent more nearly the natural flow, for probably little stored water is held over from year to year. ## ALPLAUS KILL NEAR CHARLTON, N. Y. - LOCATION.—At highway bridge about half a mile southwest of Charlton, Saratoga County. - DRAINAGE AREA.—24.9 square miles. (Determined by engineers of State of New York Conservation Commission.) - Breonds: Awallable.—August 12, 1913, to September 30, 1915. Data also in annual reports of State engineer and surveyor and State of New York Conservation Commission. - GAGE.—Gurley printing water-stage recorder on left bank just above bridge, referred to gage datum by a hook gage inside of well; vertical staff on upstream corner of eleft abutment of the bridge for auxiliary readings. Recorder inspected by E. B. Litts. - *DISCHARGE MEASUREMENTS.—Made from bridge or by wading; original V notch was rated by a number of volumetric measurements. - CHANNEL AND CONTROL.—In 1913 a low weir 43.0 feet long was constructed between abutments of bridge. Average height of its crest, 2.6 feet above bed of stream. Crest of weir was formed by a steel plate with a rectangular notch 36 inches long and 9 inches deep and a V notch in the center of the rectangular notch. Weir carried out by ice March 28, 1914, and replaced in August by a lower concrete weir of the same form except that the rectangular notch was made only 0.2 foot deep. Weir was damaged by flood July 27, 1915, and completely removed by the flood of August 22, 1915, which formed a natural control of boulders about 200 feet downstream. - EXTREMES OF DISCHARGE.—Maximum stage during year, from water stage recorder, 15.3 feet at 3.30 a. m. July 27 (discharge not determined); minimum stage, from water-stage recorder, 9.19 feet from 4 p. m. until midnight October 6 (discharge 0.03 second-foot. - 1913-1915: Maximum stage July 27, 1915 (see preceding paragraph); practically no flow August 16-29 and September 5-21, 1913. - WINTER FLOW.—Discharge relation affected by ice; discharge estimated from frequent measurements and climatic data. - REGULATION.—Some diurnal fluctuation is caused during the spring months by the operation of a grist mill a short distance upstream. - Accuracy.—Results excellent except for winter months and after weir was destroyed. Discharge measurements of Alphaus Kill near Charlton, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by | Gage
height. | Dis-
charge. | |--|--|--|--|--|--|---|---| | Dec. 3 31 Jan. 5 14 23 23 23 30 30 Feb. 12 | C. S. De Golyer R. M. Adams C. H. Pierce H. W. Fear R. W. Adams do do do O. W. Hartwell H. W. Fear | Feet. 9.88 a 9.64 a 10.76 a 10.13 a 10.50 a 10.45 a 9.96 a 9.991 a 11.22 | Secft. 17.8 .7 .4 16.4 23.8 31.5 31.0 10.1 11.0 9.4 66.4 | Feb. 19 25 27 27 27 Mar. 12 Apr. 2 23 Aug. 19 Sept. 5 25 | O. W. Hartwell H. W. Fear R. M. Adams do H. W. Fear R. M. Adams E. D. Burchard do C. C. Covert do E. D. Burchard | Feet. a 10.67 11.62 10.50 10.10 9.90 9.76 9.74 9.25 9.81 9.84 | Secft. 41.9 404 116 114 44.7 20.4 8.7 8.2 6.0 8.6 8.3 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Alphani Kill meat Charlton, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |----------------------------|---------------------------------------|---------------------------------|------------------------------------|------------------|----------------------------------|--------------------------------|--|---|------------------------------------|-----------------------------------|---------------------------------| | 1
2
3
4
5 | 0.06
.04
.06
.05 | 0.15 | 11
18
12
6.7
4.5 | | 68
48
53
42
28 | 21
19
18
21
21 | 15
20
20
15
12 | 2.0
2.0
1.72
.67 | 286
78
51
31
20 | 22
46
154
421
159 | 15
12
9.8
8.3
7.3 | | 6
7
8
9 | .03
.04
.14
.06 | .33
.56
.46 | 2.0
5.5
3.1
4.0
3.1 | | 27
21
39
47
45 | 27
34
31
31
32 | 9. 4
7. 3
9. 4
9. 4
6. 7 | .51
.85
.85
.79
.67 | 267
70 | 82
70
86
47
33 | 6.8
7.3
11
8.3
7.6 | | 11 | .07
.06
.05
.06
.07 | .41
.92
.41
.73 | 2.7
.98
.92
2.4
8.0 | | 48
59
45
53
61 | 128
117
48
32
25 | 5.0
5.0
5.0
9.4
6.7 | .73
.98
1.05
.79
.92 | 34
25
70
149
44 | 27
21
32
20
16 | 5. 6
4. 8
30
430
60 | | 16
17
18
19
20 | .16
.73
.41
1.05
3.1 | 5.5 | 11
16
10
10
5.0 | | 47
34
25
25
27 | 21
18
16
14
12 | 5.0
7.3
10
8.7
5.5 | 2.4
1.72
1.72
1.45
3.1 | 25
24
18
12
12 | 15
9.4
7.0
6.0
5.0 | | | 21 | 2. 4
1. 12
. 46
. 46
. 37 | 1. 19
.92
.62 | 2. 4
2. 0
2. 0
11
5. 5 | 447 | 38
37
50
70
63 | 10
8.7
7.3
6.7
6.7 | 4,5
8,0
6,1
5,0
4,0 | 2.4
2.7
1.72
4.0
2.7 | 11
14
47
7 16
12 | 4.6
228
257
81
82 | 8.3 | | 26 | . 25
. 62 | 2.4
3.5
9.4
5.5
4.0 | | 130
115
80 | 63
28
30
25
18
20 | 7.3
5.5
5.5
14
22 | 3.5
4.5
3.5
2.7
2.4
2.4 | 1. 72
1. 05
. 85
. 67
1. 05 | 42
472
95
103
44
30 | 33-
21
21
16
21
21 | | Note.—Discharge determined from three rating curves applicable as follows: Oct. 1 to July 26, well defined; July 27 to Aug. 21. poorly defined; Aug. 22 to Sept. 36, poorly defined. Discharge relation affected by ice Dec. 26 to Feb. 24, mean discharge estimated as follows: Oct. 28 to Nov. 2, 0.32 second-feet; Nov. 4-7, 0.16 second-feet; Nov. 15, 2.1 second-feet; Nov. 17-20, 13 second-feet; Nov. 24, 2.4 second-feet; Dec. 28-31, 26 second-feet; Jan. 1-10, 9.2 second-feet; Jan. 11-20, 95.9 second-feet; Jan. 31-31, 11 second-feet; Feb. 11-10, 70 second-feet; Feb. 11-20, 88 second-feet; Feb. 21-24, 176 second-feet; July 6-8, 106 second-feet; Sept. 16-30, 14 second-feet. Monthly discharge of Alplaus Kill near Charlton, N. Y., for the year ending Sept. 30, 1915. [Drainage area, 24.9 square miles.] | | D | ischarge in s | econd-feet. | | Run-off
(depth in | | |---|------------------------|-------------------------|---|--|--|----------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | inches on
drainage
area). | Accu- | | October | 18 | 0.03 | 0.437
3.30
5.66
37.8 | 0.018
.133
.227 | 0.02
.15
.26
1.75 | A.
B.
B.
C. | | February. March. April May. June. July. | 70
128
20
4.0 | 18
5.5
2.4
.51 | 109
41.7
27.0
7.69
1.48
78.1 | 4.38
1.67
1.08
.309
.059
3.14 | 4.56
1.92
1.20
.36
.07
3.62 | A.
A.
A.
D. | | August
September
The year | 421 | 4.6 | 66.6
27.8 | 2.67
1.12
1.34 | 3.08
1.25
18.24 | D. | ### DELAWARE RIVER BASIN. EAST BRANCH OF DELAWARE RIVER AT FISH EDDY, N. Y. LOCATION.—At New York, Ontario & Western Railway bridge at Fish Eddy, Delaware County, 5½ miles above confluence of east and west branches of Delaware River-Drainage area.—790 square miles (measured on post route map). RECORDS AVAILABLE.—November 19, 1912, to September 30, 1915. Records were obtained at Hancock, about 4 miles below, October 14, 1902, to December 31, 1912. Data also in annual reports of State engineer and surveyor and State of New York Conservation Commission. GAGE.—Vertical staff in three sections on piers of railroad bridge. A high-water section on right abutment of highway bridge 300 feet upstream was used for gage heights above 6 feet previous to July, 1913. Read twice daily by John Fininegan. DISCHARGE MEASUREMENTS.—Made from the highway bridge 200 feet above railroad bridge or by wading. CHANNEL AND CONTROL.—Coarse gravel; somewhat shifting. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 12.8 feet at 3.55 p. m., January 19 (discharge, approximately 20,800 second-feet); minimum stage recorded, 1.64 feet at 5 p. m. October 12, 14, and 15 (discharge, 97 second-feet). 1912–1915: Maximum stage 17.4 feet during the afternoon of March 27, 1913, determined by leveling from flood marks (approximate discharge, 33,500 second-feet); minimum stage recorded, 1.64 feet at 5 p. m. October 12, 14, and 15, 1914; (discharge, 97 second-feet). WINTER FLOW.—Discharge relation somewhat affected by ice. ACCURACY.—Results fair. Discharge measurements of East
Branch of Delaware River at Fish Eddy, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by- | Gage
height. | Dis-
charge. | Date. | Made by | Gage
height. | Dis-
charge. | |--|-----------------|--|----------------------------------|--------------------------------------|---|---|--| | Dec. 26
Jan. 14
Feb. 22
Apr. 9
June 18 | R. M. Adamsdodo | Feet.
a 3. 82
5. 09
4. 30
3. 58
2. 63 | Secft. 399 3,160 2,170 1,480 491 | June 20
July 12
15
Sept. 29 | E. D. Burchard
O. W. Hartwelldo.
C. C. Covert | Feet.
2. 70
6. 48
5. 38
3. 49 | Secft.
534
4,780
2,920
1,070 | Daily discharge, in second-feet, of East Branch of Delaware River at Fish Eddy, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct | Nov. | Dec | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------|---------------------------------|---------------------------------|---------------------------------|-----------------------------------|--|--|---|--|-----------------------------------|--|--|---| | 1 | 134
124
120
120
115 | 134
110
115
124
127 | 434
434
456
434
391 | | 7,560
5,080
4,070
2,670
3,180 | 3,180
2,790
2,430
2,310
2,310 | 1,220
1,100
1,100
1,070
1,070 | 1,320
1,320
1,240
1,160
1,160 | 710
685
590
560
530 | 920
1,000
590
435
745 | 780
745
885
2,100
3,320 | 1,410
1,240
1,080
1,000
920 | | 6 | 117
120
110
110
115 | 124
120
122
129
124 | 391
370
434
504
456 | 12,500
8,390
6,570
3,610 | 4,230
4,730
2,670
2,310
2,090 | 2,200
1,770
1,570
1,480
1,390 | 1,100
1,340
1,390
1,480
2,090 | 1,160
1,160
1,160
1,160
1,320 | 480
435
412
390
370 | 920
680
2,430
10,400
5,620 | 2,430
2,100
1,690
1,590
1,320 | 780
780
960
815
710 | | 11 | 108
99
101
97
97 | 127
129
127
132
145 | 412 | 4,070 | 2,090
1,870
1,870
1,390
6,380 | 1,340
1,770
1,390
1,260
1,220 | 12,500
11,300
6,960
4,900
3,910 | 1,240
1,160
1,080
1,040
960 | 390
1,040
505
458
650 | 3,320
4,230
3,320
4,730
3,460 | 1,160
1,000
960
850
780 | 620
530
560
590
590 | | 16 | 256
222
274
330 | 222
456
370
350
412 | | 2,090
5,080
19,000 | 9,700
4,730
3,180
3,180
2,920 | 1,220
1,220
1,100
1,100
965 | 2,550
1,990
1,890
1,890
1,890 | 920
850
920
850
780 | 885
590
505
480
590 | 3,610
2,430
1,790
2,320
3,610 | 1,000
815
680
620
530 | 505
480
745
815
850 | | 21 | 239
206 | 330
330
292
274
256 | | 3,460
2,920
6,570 | 2,430
2,310
2,310
4,560
15,800 | 965
930
930
1,100
1,140 | 1,890
1,690
1,410
1,410
1,320 | 710
1,080
1,160
920
1,000 | 505
480
458
505
435 | 2,210
1,790
1,500
1,240
1,080 | 480
3,610
6,760
3,320
4,070 | 3,050
3,910
2,100
1,690
1,320 | | 26 | 139 | 292
330
530
504
412 | | | 8,180
5,620
4,070 | 1,100
965
1,100
1,100
1,180
1,220 | 1,240
1 240
1,240
1,320
1,320 | 1,160
1,160
1,000
850
780
745 | 390
310
310
330
480 | 1,000
1,500
1,040
1,500
1,080
920 | 3,180
2,430
1,990
1,890
1,890
1,790 | 1,410
1,590
1,160
1,000
920 | NOTE —Discharge determined from three fairly well defined rating curves applicable as follows: Oct. 1 to Dec. 12, Jan. 7 to Apr 11, and Apr. 12 to Sept 30, Discharge relation apparently affected by ice Dec. 12 to Jan 6; mean discharge estimated as follows: Dec. 12-21, 310 second-feet; Dec 22-31, 362 second-feet; Jan. 1-6, 276 second-feet. Discharge Jan 29-31 estimated at 2,050 second-feet. 60411°-wsp 401-17-9 Monthly discharge of East Branch of Delaware River at Fish Eddy, N. Y., for the year ending Sept. 30, 1915. #### [Drainage area, 790 square miles.] | , | D | ischarge in s | econd-feet. | | Run-off
(depth in | | |---|---|---|--|--|--|--| | . Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | inches on drainage area). | Accu-
racy. | | October November December January February March April May June July August September | 530
504
19,000
15,800
3,180
12,500
1,320
1,040
6,760
3,910 | 97
110
1,390
930
1,070
710
310
435
480
480 | 157
242
369
3,920
4,330
1,480
2,560
1,050
1,515
2,300
1,830
1,140 | 0. 199
.306
.467
4. 96
5. 48
1. 87
3. 24
1. 33
.652
2. 91
2. 32
1. 44 | 0. 23
.34
.54
5. 72
5. 71
2. 16
3. 62
1. 53
.73
8. 36
2. 68
1. 61 | B. B | | The year | 19,000 | 97 | 1,640 | 2.08 | 28. 23 | | # DELAWARE RIVER AT PORT JERVIS, N. Y LOCATION.—At the toll bridge at Port Jervis, Orange County, 1 mile above Neversink River and 6 miles below Mongaup River. Drainage area. -3,250 square miles. RECORDS AVAILABLE.—October 12, 1904, to September 30, 1915. Data also in annual reports of State engineer and surveyor and State of New York Conservation Commission. GAGE.—Staff gage in two sections; the lower section inclined, about 30 feet downstream from left abutment; the upper section vertical and attached to downstream end of left abutment; prior to June 20, 1914, a chain gage on the bridge was used; gage read twice daily after July 1, 1914, by Mrs. Bella-Fuller. DISCHARGE MEASUREMENTS.—Made from highway bridge or by wading. CHANNEL AND CONTROL.—Gravel; somewhat shifting. Extremes of discharge.—Maximum stage recorded during year, 10.3 feet at 3 p. m. February 25 (discharge, 45,200 second-feet); minimum stage recorded, 0.93 feet at 8 a. m. and 3 p. m. October 13 (discharge, 292 second-feet). 1904-1915: Maximum stage recorded, 16.0 feet at 8 a. m. March 28, 1914 (discharge, 92,700 second-feet); minimum stage recorded, 0.60 foot at 8 a. m. September 22 and 23, 1908 (discharge, 175 second-feet). WINTER FLOW.—Discharge relation somewhat affected by ice. Accuracy.—Results good. Discharge measurements of Delaware River at Port Jervis, N. Y., during the year ending Sept. 30, 1915. | Date. | , Made by— | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |-------------------------------|---|----------------------------------|---------------------------------|---------------|------------------|-----------------------|---------------------------| | Oct. 29
Apr. 10
June 23 | C. S. De Golyer
O. W. Hartwell
E. D. Burchard | Feet.
1, 19
3, 62
2, 15 | Secft.
447
4,990
1,650 | July 13
14 | O. W. Hartwelldo | Feet.
5.17
4.90 | Secft.
10,700
9,450 | Daily discharge, in second-feet, of Delaware River at Port Jervis, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |----------------------------|--|---------------------------------------|---|--|--|--|--|--|---|--|--|---| | 1
2
3
4
5 | 422 | 429
416
403
442
442 | 1,380
1,180
1,110
1,180
1,240 | | 3,830
14,600
11,600
9,060
7,890 | 11,600
11,600
8,270
7,520
5,510 | 2,480
2,480
2,480
2,290
2,290 | 4,640
4,360
4,360
4,090
4,360 | 2,890
2,680
2,480
2,200
2,100 | 1,750
2,480
3,580
3,340
3,110 | 2,480
2,480
2,680
4,920
14,600 | 4,920
4,090
3,830
3,340
3,110 | | 6
7
8
9
10 | 390 | 429
416
410
378
366 | 1,240
1,240
1,530
2,640
2,430 | 32,000
16,800
11,200 | 7,160
8,270
9,460
7,520
5,210 | 5,820
5,210
4,640
4,360
3,830 | 2,299
3,110
3,580
4,090
4,360 | 4,090
4,090
4,090
3,830
4,090 | 1,920
1,750
1,590
2,100
1,590 | 3,830
3,580
2,480
33,500
23,200 | 10,300
8,270
6,810
7,520
6,140 | 2,890
2,680
2,890
2,890
2,890 | | 11
12
13
14
15 | 354 | 448
455
442
436
469 | 2,040
1,860
1,530 |
7,890
6,810
17,400
18,000
12,600 | 4,640
4,360
4,090
5,210
7,520 | 3,830
3,580
5,820
3,110
3,110 | 11,200
26,800
19,800
13,500
10,700 | 3,580
3,340
4,920
3,110
2,890 | 1,590
1,370
1,300
1,300
1,240 | 12,100
8,270
10,300
9,460
9,870 | 5,510
4,920
4,360
3,830
3,340 | 2,890
2,290
2,100
2,290
2,100 | | 16
17
18
19
20 | 660
880 | 651
830
1,180
1,310
1,110 | | 9,870
8,660
9,870
31,200
38,100 | 35,800
22,500
12,600
8,660
7,890 | 3,110
2,890
2,680
2,480
2,290 | 8,660
7,890
6,810
5,820
5,210 | 2,890
2,890
3,110
2,890
2,680 | 1,920
1,840
2,680
2,100
2,100 | 6,810
5,820
6,140
4,920
4,360 | 3,580
3,340
3,340
2,680
2,480 | 2,290
2,200
2,100
5,510
2,890 | | 21
22
23
24
25 | 935 | 990
830
830
830
780 | | 21,200
13,500
10,700
10,300
12,100 | 7,890.
7,520
7,160
9,060
41,200 | 2,290
2,290
2,480
2,480
2,680 | 4,920
4,360
4,360
4,360
4,090 | 2,680
4,360
6,470
6,140
5,210 | 1,840
1,670
1,670
1,750
1,750 | 5,820
4,360
3,830
3,830
3,340 | 2,290
2,680
12,100
10,700
8,270 | 4,640
8,270
7,160
5,210
4,090 | | 26 | 585
490
483
455
436
442 | 685
780
935
935
1,530 | | 9,060
7,520
6,810
6,140
4,640
3,580 | 33,500
20,500
13,500 | 3,110
3,340
3,340
3,110
2,890
2,680 | 3,830
3,580
3,340
3,340
5,210 | 4,640
4,640
4,640
4,090
3,580
3,340 | 2,680
1,440
1,300
1,170
1,050 | 3,340
3,830
3,580
3,340
3,580
2,890 | 9,060
6,140
5,210
5,210
5,510
6,140 | 3,830
3,340
3,830
3,340
2,890 | Note.—Discharge determined from two well-defined rating curves applicable Oct. 1 to Dec. 13 and Jan. 8 to Sept. 30. Discharge relation affected by ice Dec. 14 to Jan. 7; discharge estimated as follows: Dec. 14-31, 1,410 second-feet; Jan. 1-7, 1,290 second-feet. Monthly discharge of Delaware River at Port Jervis, N. Y., for the year ending Sept. 30, 1915. [Drainage area, 3,250 square miles.] | | D | Discharge in second-feet. | | | | | | | |---|--|--|--|---|--|----------------------------------|--|--| | Month. | Maximum. | Minimum. | imum. Mean. | | (depth in
inches on
drainage
area). | Accu-
racy. | | | | October November December January February March April May June July August September | 1,530
2,640
38,100
41,200
11,600
26,800
6,470
2,890
33,500
14,600 | 292
366
3,580
2,290
2,290
2,680
1,050
1,750
2,290
2,100 | 538
686
1,480
10,800
12,100
4,260
6,240
4,000
1,840
6,470
5,710
3,560 | 0.166
.211
.455
3.32
3.72
1.31
1.92
1.28
.566
1.99
1.76
1.10 | 0. 19
.24
.52
3. 83
3. 87
1. 51
2. 14
1. 42
.63
2. 29
2. 03
1. 23 | B. B. C. B. A. A. A. A. A. A. A. | | | | The year | 41,200 | 292 | 4,760 | 1,46 | 19.90 | | | | ## DELAWARE RIVER AT RIEGELSVILLE, N. J. LOCATION.—At the toll suspension bridge between Riegelsville, Warren County, N. J., and Riegelsville, Pa., 600 feet above Musconetcong River and 9 miles below Lehigh River. Drainage area.—6,430 square miles. RECORDS AVAILABLE.—July 3, 1906, to September 30, 1915. GAGE.—Staff in three sections installed November 14, 1914, on left bank at upstream side of bridge; lower section inclined, middle and upper sections vertical; prior to November 14, 1914, chain gage attached to upstream side of bridge; gage read twice a day, to quarter-tenths, by J. H. Deemer. DISCHARGE MEASUREMENTS.-Made from bridge. CHANNEL AND CONTROL.—Large bowlders; practically permanent. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 17.6 feet at 8 a. m. February 26 (discharge, 86,100 second-feet); minimum stage recorded, 1.78 feet at 8 a. m. November 6 (discharge, 1,170 second-feet). 1906–1915: Maximum stage ¹ recorded, 25.0 feet March 28, 1913 (approximate discharge, 144,000 second-feet); minimum stage recorded, 1.78 feet November 6, 1914 (discharge 1,170 second-feet). WINTER FLOW.—Discharge relation not seriously affected by ice. DIVERSIONS.—The Delaware division of the Pennsylvania canal diverts 200 to 300 second-feet from Lehigh River near its mouth from about the last of March to the middle of December each year. ACCURACY.—Results good. The following discharge measurement was made by G. C. Stevens: November 17, 1914: Gage height, 2.93 feet; discharge, 3,170 second-feet. Canal was measured November 16, 1914, and discharge found to be 214 second-feet. Daily discharge, in second-feet, of Delaware River at Riegelsville, N. J., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |----------------------------|--|---|--|---|--|--|---|---|---|--|---|--| | 1
2
3
4
5 | 1,500
1,500
1,500
1,420
1,350 | 1,280
1,420
1,350
1,420
1,280 | 2,600
2,600
2,400
2,400
2,400
2,400 | 3,260
3,030
2,700
2,810
2,810 | 15,000
33,300
36,900
21,600
18,800 | 25,600
21,600
18,800
15,400
13,900 | 5,650
5,360
5,360
5,080
5,950 | 8,820
8,160
7,830
7,510
7,830 | 6,250
5,950
5,650
5,360
5,080 | 2,700
2,810
5,650
6,560
6,870 | 4,800
5,950
6,870
11,600
20,700 | 10,500
9,160
7,830
7,190
6,250 | | 6 | 1,500 | 1,200 | 2,200 | 2,810 | 23,000 | 12,700 | 5,650 | 8,160 | 4,800 | 6,250 | 25,600 | 5,950 | | 7 | 1,420 | 1,350 | 2,600 | 23,500 | 29,300 | 12,700 | 5,950 | 7,830 | 4,530 | 5,950 | 19,300 | 6,250 | | 8 | 1,420 | 1,280 | 5,650 | 33,900 | 26,100 | 12,000 | 6,870 | 7,510 | 4,260 | 5,360 | 17,500 | 5,950 | | 9 | 1,500 | 1,350 | 5,650 | 36,900 | 19,700 | 10,900 | 7,190 | 7,190 | 4,000 | 5,360 | 16,700 | 5,950 | | 10 | 1,660 | 1,420 | 6,560 | 21,600 | 14,600 | 10,200 | 7,190 | 7,190 | 3,750 | 35,700 | 15,400 | 6,250 | | 11 | 1,500 | 1,420 | 5,650 | 16,300 | 12,400 | 9,500 | 8,820 | 6,870 | 3,500 | 19,300 | 12,400 | 5,360 | | 12 | 1,420 | 1,280 | 5,080 | 15,800 | 12,400 | 9,500 | 30,400 | 6,250 | 3,500 | 12,700 | 10,900 | 5,080 | | 13 | 1,500 | 1,280 | 4,530 | 56,700 | 13,900 | 8,820 | 35,700 | 6,560 | 3,750 | 10,200 | 12,000 | 4,530 | | 14 | 1,420 | 1,420 | 5,360 | 51,100 | 13,100 | 8,160 | 25,000 | 6,560 | 4,000 | 12,700 | 10,500 | 4,260 | | 15 | 1,280 | 1,280 | 3,750 | 34,500 | 14,600 | 8,160 | 18,800 | 5,950 | 3,500 | 12,700 | 9,500 | 4,260 | | 16 | 1,580 | 2,500 | 3,380 | 25,600 | 33,300 | 7,830 | 15,400 | 5,360 | 4,530 | 11,600 | 8,820 | 4,260 | | 17 | 2,100 | 3,380 | 3,260 | 20,700 | 47,000 | 7,830 | 13,500 | 5,650 | 4,000 | 8,820 | 8,490 | 4,000 | | 18 | 2,200 | 2,810 | 3,380 | 22,600 | 29,300 | 7,190 | 11,600 | 5,360 | 4,530 | 7,510 | 7,510 | 4,000 | | 19 | 2,400 | 2,810 | 3,140 | 43,100 | 22,600 | 6,870 | 10,500 | 5,650 | 4,800 | 7,830 | 6,560 | 4,800 | | 20 | 2,700 | 2,810 | 3,500 | 68,200 | 18,800 | 6,560 | 9,500 | 5,360 | 4,260 | 7,190 | 5,950 | 5,360 | | 21 | 2,400 | 3,380 | 4,000 | 48,400 | 17,100 | 6,250 | 9, 160 | 5,080 | 4,260 | 6,870 | 5,650 | 8,820 | | 22 | 2,400 | 2,300 | 4,530 | 32,100 | 15,800 | 6,560 | 8, 490 | 7,510 | 4,000 | 7,510 | 8,820 | 9,500 | | 23 | 2,200 | 2,200 | 3,260 | 24,500 | 15,400 | 6,250 | 8, 160 | 12,400 | 3,750 | 6,560 | 18,000 | 13,900 | | 24 | 2,010 | 2,010 | 3,140 | 23,000 | 17,500 | 6,250 | 8, 160 | 12,000 | 3,750 | 5,650 | 24,000 | 9,840 | | 25 | 2,100 | 1,920 | 3,030 | 21,100 | 62,400 | 5,950 | 8, 160 | 11,600 | 3,500 | 5,360 | 17,100 | 7,510 | | 26
27
28
29
30 | 1,920
1,830
1,580
1,420
1,580
1,500 | 1,660
1,920
2,010
2,100
2,200 | 2,810
2,600
2,700
2,810
3,500
3,500 | 20,200
17,500
15,400
13,500
10,200
8,160 | 78,600
54,600
33,900 | 6,250
6,250
6,870
6,560
5,950
5,950 | 7,510
7,190
7,510
6,870
7,190 | 10,900
9,500
9,160
8,490
7,830
7,190 | 3,500
3,380
3,030
2,920
2,700 | 5,080
5,080
5,650
5,650
5,080
5,080 | 13,500
12,400
10,200
9,500
10,500
11,200 | 6,560
6,250
5,650
5,650
5,080 | Note.—Discharge determined from a well-defined rating curve. ¹ It has been estimated that the flood of Oct. 10-11, 1903, reached a stage of 41.5 feet, corresponding to a discharge of 275,000 second-feet. \ Monthly discharge of Delaware River at Riegelsville, N. J., for the year ending Sept. 30, 1915. [Drainage area, 6,430 square miles.] | | Ŋ. | Run-off | | | | | |---|--
--|--|---|--|----------------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October
November
December
January
February
March
April. | 3,380
6,560
68,200
78,600
25,600
35,700 | 1,280
1,200
2,200
2,700
12,400
5,950
5,080 | 1,740
1,870
3,610
23,300
26,800
9,780
10,600 | 0.309
.330
.574
3.62
4.17
1.55
1.68 | 0.36
.37
.66
4.17
4.34
1.79 | B.
B.
A.
A.
A.
A. | | May.
June
July
August.
September. | 12,400
6,250
35,700
25,600 | 5,080
2,700
2,700
4,800
4,000 | 7,720
4,160
8,300
12,200
6,530 | 1. 24
. 686
1. 33
1. 93
1. 05 | 1.43
.77
1.53
2.22
1.17 | A.
A.
A.
A. | | The year | 78,600 | 1,200 | 9,620 | 1,53 | 20.68 | | Note.—To allow for water diverted by the canal 250 second-feet was added to the computed mean discharge, Oct. 1 to Dec. 10 and Mar. 8 to Sept. 30, before computing discharge per square mile; first three columns of table therefore indicate actual quantity of water in the river; the two remaining columns represent the total run-off from drainage area above Riegelsville, including the discharge of the canal. #### BEAVER KILL AT COOKS FALLS, N. Y. Location.—At covered highway bridge in Cooks Falls, Delaware County. DRAINAGE AREA.—236 square miles (measured on post route and topographic maps.) RECORDS AVAILABLE.—July 25, 1913, to September 30, 1915. Data also in annual report of State engineer and surveyor. GAGE.—Vertical staff in two sections, bolted to rock on left bank under the bridge. Read twice daily by J. L. Rosa. DISCHARGE MEASUREMENTS.—Made from bridge or by wading. CHANNEL AND CONTROL.—Coarse gravel, boulders, and solid ledge; practically permanent. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 9.7 feet at 8 a.m. February 25 (discharge, approximately 6,240 second-feet); minimum stage recorded, 0.8 foot from 5 p. m. October 9 to 8 a.m. October 15 (discharge, 39 second-feet). 1913–1915: Maximum stage recorded, 10.9 feet at 5 p. m. March 28, 1914 (discharge, approximately 7,770 second-feet); minimum stage recorded, 0.80 foot at 5 p. m. September 19 and from 5 p. m. October 9 to 8 a. m. October 15, 1914 (discharge, 39 second-feet). WINTER FLOW.—Discharge relation occasionally affected by ice. ACCURACY.—Results good. Discharge measurements of Beaver Kill at Cooks Falls, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Date. Made by— | | Dis-
charge. | |-------------------------------------|-------------------|-------------------------------|------------------------------------|---------------------------------|--|----------------------------------|-----------------------------| | Feb. 23
Mar. 12
13
Apr. 10 | R. M. Adamsdododo | Feet. 3. 15 1. 95 2. 01 3. 22 | Secft.
717
260
328
714 | June 21
July 15
Sept., 28 | E. D. Burchard
O. W. Hartwell
C. C. Covert | Feet.
1. 41
2. 88
2. 70 | Secft.
138
624
486 | Daily discharge, in second-feet, of Beaver Kill at Cooks Falls, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |----------|------|------|--------------|-------|-------|-------|-------|------|-------|-------|-------|-------| | 1 | 55 | 51 | 195 | | 1,660 | 930 | 263 | 525 | 293 | 278 | 371 | 525 | | 2 | 49 | 55 | 208 | | 1,390 | √ 830 | 235 | 490 | 293 | 293 | 355 | 455 | | 3 | 49 | 49 | 208 | | 980 | 645 | 208 | 455 | 263 | 263 | 387 | 387 | | 4 | 49 | 49 | 195 | | 880 | 565 | 222 | 455 | 235 | 208 | 930 | 355 | | 5 | 49 | 49 | 182 | | 780 | 525 | 208 | 455 | 208 | 263 | 490 | 323 | | 6 | 49 | 49 | .1 70 | | 930 | 490 | 235 | 490 | 208 | 263 | 455 | 323 | | 7 | 44 | 49 | 158 | 4,350 | 880 | 455 | 387 | 438 | 182 | 208 | 565 | 339 | | 8 | 43 | 49 | 147 | 1,940 | 735 | 404 | 387 | 735 | 182 | 1,210 | 490 | 525 | | 9 | 40 | 61 | 249 | 1,090 | 645 | 355 | 490 | 605 | 158 | 2,400 | 455 | 387 | | 10 | 39 | 59 | 263 | 690 | 565 | 355 | 830 | 490 | 136 | 1,090 | 387 | 323 | | 11 | 39 | 49 | 208 | 355 | 490 | 339 | 3,670 | 455 | 147 | 830 | 355 | 293 | | 12 | 39 | 47 | 182 | 421 | 455 | 308 | 2,880 | 421 | 182 | 735 | 323 | 263 | | 13 | 39 | 44 | 182 | 2,090 | 930 | 278 | 1,800 | 387 | 158 | 930 | 323 | 235 | | 14 | 39 | 44 | 147 | 1,150 | 455 | 323 | 1,210 | 355 | 147 | 1,090 | 293 | 263 | | 15 | 39 | 59 | 140 | 930 | 2,720 | 293 | 1,040 | 355 | 147 | 645 | 293 | 263 | | 16 | 140 | 339 | | 780 | 2,320 | 293 | 880 | 355 | 323 | 490 | 355 | 235 | | 17
18 | 136 | 355 | | 780 | 1,460 | 235 | 735 | 421 | 208 | 645 | 278 | 182 | | 18 | 125 | 490 | | 2,560 | 880 | 208 | 735 | 371 | 170 | 525 | 249 | 182 | | 19 | 170 | 438 | | 5,640 | 605 | 235 | 645 | 404 | 170 | 404 | 208 | 421 | | 20 | 182 | 235 | | 2,720 | 645 | 235 | 605 | 371 | 182 | 1,520 | 182 | 371 | | 21 | 125 | 170 | | 1,660 | 645 | 235 | 525 | 293 | 147 | 735 | 182 | 2,480 | | 22 | 90 | 140 | | 1,090 | 690 | 235 | 490 | 735 | 136 | 605 | 4,050 | 1,800 | | 23 | 104 | 118 | | 1,270 | 735 | 263 | 490 | 565 | 154 | 490 | 2,640 | 980 | | 24 | 61 | 94 | | 1,520 | 3,050 | 293 | 490 | 455 | 140 | 455 | 1,330 | 735 | | 25 | 61 | 125 | | 1,270 | 4,980 | 371 | 490 | 421 | 118 | 387 | 1,800 | 645 | | 26 | 55 | 125 | | 1,040 | 2,480 | 355 | 455 | 404 | 114 | 355 | 1,150 | 645 | | 27 | 55 | 182 | | 830 | 1,590 | 293 | 387 | 355 | 98 | 735 | 880 | 735 | | 28 | 49 | 208 | | 645 | 1,330 | 308 | 355 | 323 | 140 | 490 | 735 | 525 | | 29
30 | 49 | 182 | | 565 | | 323 | 490 | 293 | 110 | 735 | 645 | 438 | | 30 | 51 | 182 | | 455 | | 323 | 645 | 308 | 110 | 455 | 645 | 404 | | 31 | 55 | ! | | 421 | | 323 | l | 293 | l | 355 | 645 | 1 | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice Dec.16 to Jan. 6; discharge estimated from record of flow of East Branch of Delaware River at Fish Eddy as follows: Dec. 16-31, 156 second-feet; Jan. 1-6, 84 second-feet. Monthly discharge of Beaver Kill at Cooks Falls, N. Y., for the year ending Sept. 30, 1915. [Drainage area, 236 square miles.] | | D | Discharge in second-feet. | | | | | | | |---|--|--|--|---|---|-------------------------------|--|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | | | October November December January February March April May June July August September | 5,640
4,980
930
3,670
735
323
2,400
4,050 | 39
44
455
208
208
293
98
208
182 | 70. 0
138
172
1, 190
1, 280
375
749
435
175
648
724
535 | 0. 296
. 585
. 729
5. 04
5. 42
1. 59
3. 17
1. 84
. 742
2. 74
3. 07
2. 27 | 0.34
.65
.84
5.81
1.83
3.54
2.12
.83
3.16
3.54
2.53 | A. A. C. C. B. B. B. B. B. B. | | | | The year | 5,640 | 39 | 536 | 2. 27 | 30, 83 | | | | ## WEST BRANCH OF DELAWARE RIVER AT HALE EDDY, N. Y. LOCATION.—At the highway bridge 400 feet west of the Eric Railroad station in the village of Hale Eddy, Delaware County, 8 miles below power dam of the Deposit Electric Co., and 8½ miles above junction with East Branch of Delaware River. Drainage area.—611 square miles (measured on post route map). RECORDS AVAILABLE.—November 15, 1912, to September 30, 1915. Records were obtained at Hancock, about 6 miles below, from October 15, 1902, to December 31, 1912. Data also in annual reports of the State engineer and surveyor and State of New York Conservation Commission. GAGE.—Vertical staff in four sections attached to rocks near right abutment and to the abutment. Read twice daily by William Seeley. DISCHARGE MEASUREMENTS.—Made from the highway bridge or by wading. CHANNEL AND CONTROL.—Coarse gravel and bowlders. Control is about three-fourths mile below the gage and is practically permanent. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 13.9 feet at 8 p. m. July 8 (discharge, 20,000 second-feet); minimum stage recorded, 1.3 feet at 5 p. m. November 6 and 9 (discharge, 53 second-feet). 1912-1915: Maximum stage recorded, a 15.3 feet at 5 p. m. March 27, 1913; (discharge, approximately 25,000 second-feet); minimum stage recorded, 1.0 foot at 6 p. m. September 21, 1913 (discharge, 34 second-feet). Winter flow.—Discharge relation seriously affected by ice. Accuracy.—Results good. Discharge measurements of West Branch of Delaware River at Hale Eddy, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by | Gage
height. | Dis-
charge. | |-------------------------------|----------------------------------|------------------------------|--------------------------------|--------------------|-------------------------------|-------------------------|------------------------| | Oct. 30
Dec. 26
Jan. 13 | C. S. De Golyer
R. M. Adamsdo | Feet. 1.63
b 5.20
5.32 | Secft.
84
. 339
2,340 | Feb. 22
June 24 | R. M. Adams
E. D. Burchard | Feet.
3, 89
2,
06 | Secft.
1,260
212 | a The observer states that on Oct. 10, 1893, the water rose to an elevation indicated by a nail in a tree near the gage. This nail is at gage height 20.3 feet. No data available indicating whether present rating table is applicable to this gage height. b Discharge relation affected by ice. Daily discharge, in second-feet, of West Branch of Delaware River at Hale Eddy, N.Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------------------|------------------------------------|---------------------------------|---------------------------------|--|---|--|---|--|---------------------------------|---|---|--| | 1
2
3
4 | 88
81
81
76
70 | 76
76
70
81
61 | 220
260
260
220
200 | | 1,580
2,330
1,580
1,140
1,140 | 1,900
1,740
1,350
1,000
880 | 552
525
498
470
420 | 700
760
760
700
760 | 325
280
240
240
220 | 1,070
940
1,280
1,000
1,000 | 640
700
1,420
3,920
2,420 | 498
445
370
325
280 | | 6 | 70
70
76
66
76 | 66
70
70
70
106 | 152
182
165
152
165 | 4,420
2,810
1,900 | 1,280
2,420
1,420
1,070
880 | 1,070
1,000
880
760
640 | 552
880
940
1,000
1,420 | 760
640
760
880
760 | 138
165
165
126
138 | 820
640
6,130
11,400
4,810 | 2,420
2,060
1,740
1,500
1,420 | 280
260
260
260
260
260 | | 11 | 70
70
66
66
70 | 88
88
88
70
96 | 165
138
96 | 1,280
1,140
2,240
1,820
1,280 | 820
940
1,210
1,420
4,810 | 640
580
498
525
498 | 4,040
4,950
3,450
2,510
1,900 | 640
610
552
525
470 | 152
138
96
126
126 | 3,010
3,920
3,010
3,560
2,420 | 1,140
1,000
940
760
760 | 260
200
260
348
302 | | 16 | 76
152
126
138
138 | 152
200
152
165
165 | | 1,140
1,000
2,710
7,460
4,680 | 5,820
2,420
2,240
1,580
1,350 | 470
445
395
348
420 | 1,980
1,420
1,280
1,140
1,000 | 420
445
470
420
370 | 138
126
115
126
165 | 1,740
1,980
1,740
1,280
1,420 | 640
760
525
445
395 | 280
200
165
370
200 | | 21 | 165
138
115
96
96 | | | 3,120
1,980
1,660
2,420
1,740 | 1,280
1,280
1,420
3,010
6,770 | 395
420
445
640
700 | 880
760
760
700
700 | 348
610
580
470
470 | 182
138
182
152
182 | 1,140
940
1,420
1,140
880 | 348
640
1,580
1,000
880 | 302
325
348
325
200 | | 26 | 96
115
88
106
76
70 | 280 | | 1,580
1,280
1,140
760
640
470 | 3,920
3,120
2,060 | 1,140
880
760
760
700
640 | 640
552
525
700
610 | 498
580
525
420
370
325 | 152
96
115
115
138 | 760
940
•760
760
760
610 | 760
760
552
525
610
640 | 200
325
348
240
200 | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice Nov. 22-29 and Dec. 14 to Jan. 6; discharge estimated as follows: Nov. 22-29, 170 second-feet; Dec.14-22, 107 second-feet; Dec. 23-31, 298 second-feet; Jan. 1-7, 970 second-feet. Monthly discharge of West Branch of Delaware River at Hale Eddy, N. Y., for the year ending Sept. 30, 1915. [Drainage area, 611 square miles.] | , | D | ischarge in s | econd-feet, | | Run-off | | |---------------------------------|-------------------------|-------------------------|--------------------------------|----------------------------------|--|----------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu
racy. | | October
November
December | | | 93. 1
126
194 | 0. 152
. 207
. 318 | 0.18
.23
.37 | В.
В.
С. | | January February March April | 6,770
1,900
4,950 | 820
348
420 | 1,850
2,150
759
1,260 | 3. 03
3. 52
1. 24
2. 06 | 3. 49
3. 66
1. 43
2. 30 | B.
B.
A.
A. | | May
June
July
August, | 325
11,400
3,920 | 325
96
610
348 | 568
160
2,040
1,100 | . 930
. 262
3. 34
1. 80 | 1.07
.29
3.85
2.08 | A.
B.
A.
A. | | September | | 165
61 | 288
877 | 1.44 | 19.48 | A. | ## SUSQUEHANNA RIVER BASIN. ## SUSQUEHANNA RIVER AT CONKLIN, N.Y. LOCATION.—At the highway bridge just below Conklin, Broome County, 5 miles below Big Snake Creek, and 8 miles above Chenango River. Drainage area.—2,350 square miles. RECORDS AVAILABLE.—November 13, 1912, to September 30, 1915. Records were obtained at Binghamton, 8 miles below, July 31, 1901, to December 31, 1912. Data also in annual reports of the State engineer and surveyor and State of New York Conservation Commission. Gage.—Stevens water-stage recorder on left bank installed October 4, 1914; prior to that date, staff in two sections—the lower section inclined, the upper vertical—attached to left abutment. Recorder inspected by Mrs. Cora Ames. DISCHARGE MEASUREMENTS.—Made from the bridge or by wading. CHANNEL AND CONTROL.—Coarse gravel and bowlders. EXTREMES OF DISCHARGE.—Maximum stage during year from water-stage recorder, 16.15 feet at 12 o'clock midnight, July 8 (discharge, 40,500 second-feet); minimum stage from water-stage recorder, 1.88 feet at 5 p. m., October 11 (discharge, 200 second-feet). 1901–1915: Maximum stage recorded, 19.74 feet at the former station in Binghamton, at 7.40 a. m. March 2, 1902 (discharge, approximately 62,500 second-feet); minimum stage recorded, 1.32 feet at 8.20 a. m. and 4 p. m. September 16, 1913 (discharge, 106 second-feet). WINTER FLOW.—Discharge relation somewhat affected by ice. ACCURACY.—Results good. Discharge measurements of Susquehanna River at Conklin, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |--|---|---|--------------------------------------|------------------------------------|-------------------|---|--| | Oct. 3
Nov. 2
Dec. 23
Jan. 11 | E. D. Burchard.
C. S. De Golyer
R. M. Adams | Feet.
2. 35
2. 21
a 2. 94
a 5. 82 | Secft.
523
368
654
4,730 | Feb. 4
20
Mar. 11
June 25 | R. M. Adamsdododb | Feet.
a 6, 33
6, 10
4, 55
3, 02 | Secft.
4,170
5,360
2,850
935 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Susquehanna River at Conklin, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |----------|------|------------|------------|-----------------|------------------|----------------|--------|-------|-------|---------|--------|----------------| | 1 | 551 | 360 | 890 | | 3,330 | 7,330 | 2,210 | 2,750 | 1,040 | 1,750 | 2,280 | 2,000 | | 2 | 572 | 375 | 890 | | 6,400 | 6,860
5,380 | 2,070 | 2,670 | 954 | 7,560 | 1,810 | 1,810
1,570 | | 3 | 440 | 395 | 1,020 | | 6, 400
5, 390 | 5,380 | 2,000 | 2,750 | 874 | 9,240 | 9,500 | 1,570 | | 4 | 422 | 370 | 1,110 | | 3,950 | 4,640 | 2,000 | 2,510 | 796 | 6,170 | 15,200 | 1,310
1,200 | | 5 | 422 | 375 | 1,040 | | 2,910 | 4,140 | 1,880 | 2,590 | 712 | 5, 170 | 19,400 | 1,200 | | 6 | 395 | 350 | 962 | | 2,830 | 3,860 | 2,000 | 2,510 | 656 | 4,530 | 13,100 | 1,170
1,100 | | 7 | 385 | 355 | 922 | | 3, 160 | 3,770 | 2,510 | 2,360 | 677 | 4,140 | 9,000 | 1,100 | | 8 | 385 | 330 | 842
858 | | 3,500 | 3,500 | 3,420 | 2,360 | 600 | 15,800 | 7,330 | 1,060 | | 9 | 375 | 350 | 858 | | 2,830 | 3,420 | 3,950 | 2,440 | 565 | 37,900 | 6,400 | 1,020
1,160 | | 10 | 370 | 365 | 882 | • • • • • • • • | 2,440 | 2,990 | 5,060 | 2,510 | 565 | 30, 200 | 6,400 | 1,160 | | 11 | | 360 | 874 | 5,060 | 2,210 | 2,830 | 7,560 | 2,140 | 551 | 17,400 | 5,060 | 1,400
1,130 | | 12 | 350 | 370 | 866 | 3,770 | 2,140 | 2,590 | 12,100 | 1,880 | 518 | 12,100 | 4,230 | 1,130 | | 13 | 355 | 375 | 761 | 7,100 | 2,360 | 2,360 | 10,500 | 1,690 | 488 | 13,100 | 3,860 | 1,200 | | 14 | 335 | 375 | 906 | 5,720 | 3, 160 | 2, 210 | 7,800 | 1,570 | 558 | 12,300 | 3,680 | 2,750 | | 15 | 325 | 375 | 733 | 4,840 | 9,740 | 2, 210 | 5,940 | 1,630 | 551 | 9,740 | 3,500 | 5,060 | | 16 | 365 | 452 | | 4,140 | 21,100 | 2, 210 | 5,060 | 1,520 | 524 | 7,800 | 3,770 | 3,590 | | 17
18 | 385 | 551 | | .3,420 | 17,700 | 2,140 | 4,430 | 1,460 | 558 | 6,860 | 3,240 | 2,510 | | 18 | 355 | 754 | | 6,400 | 11,000 | 2,000 | 3,680 | 1,350 | 565 | 5,500 | 2,830 | 2,210 | | 19
20 | 458 | 826 | | 15,800 | 7,100 | 1,880 | 3,420 | 1,520 | 551 | 4,740 | 2,590 | 2,440 | | 20 | 470 | 740 | | 18,700 | 5,390 | 1,810 | 3,080 | 1,460 | 600 | 4, 430 | 2,360 | 2, 280 | | 21 | 586 | 677 | | | 4,740 | 1,810 | 2,830 | 1,350 | 649 | 3,860 | 2,360 | 1,940 | | 22 | 656 | 579 | | | 4,430
4,740 | 1,880 | 2,510 | 1,570 | 782 | 3,240 | 2,360 | 2,070 | | 23 | 551 | 614 | | | 4,740 | 1,880 | 2,360 | 1,750 | 1,020 | 2,990 | 4,330 | 2, 210 | | 24 | 452 | 565 | | | 11,000 | 2,070 | 2,280 | 1,750 | 890 | 2,510 | 4,230 | 1,880 | | 25 | 440 | 572 | l . | 1 | 1 | 2,510 | 2,140
| 1,520 | 874 | 2, 210 | 3,330 | 1,570 | | 26 | 440 | 600 | | | 21,800 | 3,330 | 2,000 | 1,520 | 930 | 2,140 | 2,990 | 1,520 | | 27 | 422 | 649
874 | | | 12,800 | 4,040 | 1,880 | 1,690 | 810 | 2,590 | 2,510 | 1,570 | | 28 | 390 | 874 | | | 8,520 | 3,080 | 1,810 | 1,630 | 740 | 2,510 | 2,140 | 2,000
1,810 | | 29 | 370 | 1,130 | | | | 2,670 | 2,000 | 1,460 | 628 | 2,670 | 1,940 | 1,810 | | 30
31 | 395 | 1,040 | | | | 2,670 | 2,510 | 1,260 | 621 | 2,510 | 2,070 | 1,630 | | 31 | 375 | | | | | 2,360 | | 1,100 | | 2,140 | 2,210 | | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice Dec. 16 to Feb. 23; discharge for this period only approximate. No record of gage height obtained Feb. 10-13 and Mar. 6-9; discharge estimated. Mean discharge estimated as follows: Dec. 16-31, 751 second-feet; Jan. 1-10, 4,820 second-feet; Jan. 21-31, 4,430 second-feet. Monthly discharge of Susquehanna River at Conklin, N. Y., for the year ending Sept. 30, 1915 # [Drainage area, 2,350 square miles.] | | D | ischarge in s | econd-feet. | | Run-off | | |---|---|--|--|--|---|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June July August September | 1,130
1,110
18,700
24,400
7,330
12,100
2,750
1,040
37,900 | 325
330
2,140
1,810
1,810
1,100
488
1,750
1,810
1,020 | 424
537
825
5,540
7,540
3,110
3,770
1,880
695
7,930
5,030
1,870 | 0. 180
. 229
. 351
2. 36
3. 21
1. 32
1. 60
. 800
. 296
6. 3. 37
2. 14
. 796 | 0. 21
- 26
- 40
2. 72
3. 34
1. 52
1. 78
- 92
33
8. 88
2. 47
89 | A.
A.
C.
C.
B.
A.
A.
A.
A. | | The year | 37,900 | 325 | 3, 240 | 1.38 | 18.72 | , , | ## CHENANGO RIVER NEAR CHENANGO FORKS, N. Y. LOCATION.—About 1½ miles below Tioughnioga River, 2 miles by road below Chenango Forks post office, Broome County, and 11½ miles above Binghamton and the mouth. Drainage area.—1,420 square miles. See "Diversions." RECORDS AVAILABLE.—November 11, 1912, to September 30, 1915. Records were obtained at Binghamton July 31, 1901, to December 31, 1911. Data also in annual reports of State engineer and surveyor and State of New York Conservation Commission. Gage.—Stevens water-stage recorder on left bank installed October 2, 1914; prior to that date inclined staff on left bank. Recorder inspected by Erastus Ingraham. DISCHARGE MEASUREMENTS.-Made from a cable near gage or by wading. CHANNEL AND CONTROL.—Sand, gravel, and small cobblestones; practically permanent. EXTREMES OF DISCHARGE.—Maximum stage during year, from water-stage recorder, 12.04 feet at 11 a.m. February 25 (discharge, 27,200 second-feet); minimum stage, from water-stage recorder, 2.52 feet at noon November 7 (discharge, 241 second-feet). 1901–1915: Maximum stage recorded, 12.04 feet at 11 a.m. February 25, 1915 (discharge 27,200 second-feet), minimum stage recorded, 4.6 feet at the former station in Binghamton at 8 a.m. August 28, 1909 (discharge, 10 second-feet). WINTER FLOW.—Discharge relation somewhat affected by ice. DIVERSIONS.—The run-off from 30 square miles at head of Chenango River and from 18.2 square miles on Tioughnioga River is stored in reservoirs and diverted to the Erie canal, and is not included in the following tables. These two areas have been subtracted from the total area of 1,468 square miles. ACCURACY.—Results good. Discharge measurements of Chenango River near Chenango Forks, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by— | | Dis-
charge. | Date. | Made by | Gage
height. | Dis-
charge. | |------------------------|----------------------------------|------------------------------------|-----------------------------|-------------------------------|-----------------------------|----------------------------------|---------------------------------| | Nov. 3
3
Dec. 25 | C. S. De Golyerdo
R. M. Adams | Feet.
2, 59
2, 63
a 3, 35 | Secft.
253
270
563 | Jan. 10
Mar. 10
June 26 | B. M. AdamsdoE. D. Burchard | Feet.
6. 21
4. 00
2. 98 | Secft.
6,150
1,920
533 | a Discharge relation affected by ice. Daily discharge, in second-feet, of Chenango River near Chenango Forks, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |----------------------------|--|-----------------------------------|-------------------------------------|--|---|--|---|--|---------------------------------|--|--|---| | 1
2
3
4
5. | 352
322
297
285
285 | 279
285
279
279
261 | 744
938
1,170
1,030
875 | | 4,440 | 5,140
4,440
3,620
2,970
2,790 | 1,700
1,590
1,560
1,460
1,680 | 1,560
1,710
1,560
1,380
1,400 | 702
631
593
521
496 | 10,300
7,050
4,120
4,440
4,220 | 1,190
3,150
3,240
8,260
7,700 | 1,310
1,090
975
888
815 | | 6
7
8
9
10 | 273
261
267
279
267 | 261
255
261
285
291 | 755
692
692
724
744 | 7,700
16,200
10,600
6,530 | 2,790
3,520
3,060
2,530
2,110 | 2,700
2,530
2,360
2,030
2,030 | 1,950
3,720
4,120
5,620
6,790 | 1,280
1,090
1,480
1,840
1,380 | 446
454
430
406
390 | 4,330
2,700
9,400
17,800
10,000 | 5,500
5,880
4,900
5,620
5,020 | 755
755
791
900
1,680 | | 11 | 261
261
291
279
261 | 297
303
309
352
330 | 724
692
574
504 | 4,660
4,010
7,440
6,140
4,660 | 2,110
2,030
2,530
2,620
7,440 | 1,870
1,710
1,590
1,620
1,640 | 8,540
9,100
6,530
4,550
3,520 | 1,130
975
938
1,060
950 | 382
360
322
315
338 | 6,010
7,700
6,790
5,500
4,220 | 3,810
3,150
3,060
2,790
2,280 | 1,330
988
2,360
7,180
4,900 | | 16 | 279
382
454
414
438 | 470
888
755
546
574 | | 3,810
3,340
6,270
1,300
11,800 | 13,800
9,700
5,880
4,330
3,810 | 1,590
1,530
1,410
1,330
1,370 | 2,970
2,620
2,280
2,030
1,870 | 803
1,000
1,270
1,060
875 | 487
538
446
382
462 | 3,340
2,970
2,530
2,110
1,950 | 2,440
2,030
1,710
1,460
1,300 | 3,720
3,150
2,970
2,530
2,280 | | 21
22
23
24
25 | 438
390
352
338
297 | 530
496
462
504
530 | | 7,700
4,660
3,810
3,520
3,150 | 3,520
3,340
4,550
12,400
25,800 | 1,470
1,410
1,380
1,950
2,280 | 1,680
1,470
1,410
1,420
1,260 | 827
1,640
1,740
1,370
1,240 | 504
430
530
682
702 | 1,790
1,560
1,400
1,230
1,170 | 1,200
2,620
4,660
2,790
2,360 | 2,790
3,240
2,280
1,840
1,650 | | 26 | 303
291
291
279
285
285 | 512
660
1,170
938
779 | | 3,060
2,700
2,360
2,030
1,650
1,640 | 17, 400
9, 100
6, 530 | 3,810
2,880
2,360
2,440
2,030
1,820 | 1,160
1,010
1,040
2,030
1,790 | 1,200
1,480
1,270
975
839
744 | 564
470
406
368
602 | 1,810
2,280
2,190
1,870
1,620
1,300 | 1,870
1,600
1,380
1,380
1,420
1,520 | 1,680
3,810
2,620
1,950
1,660 | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice Dec. 15 to Jan. 6; discharge estimated as follows: Dec. 15-31, 546 second-feet; Jan. 1-6, 819 second-feet. These data supersede those published in the 1915 Annual Report of the State engineer and surveyor. # Monthly discharge of Chenango River near Chenango Forks, N. Y., for the year ending Sept. 30, 1915. ## [Drainage area, 1,420 square miles.a] | • | . Б | ischarge in s | econd-feet. | | Run-off | | |-----------------------|------------------|-----------------------|----------------------------|--------------------------|--|----------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
Inches on
drainage
area). | Accu-
racy. | | Octobet | 1,170 | 261
255 | 315
471
650 | 0. 222
. 332
. 458 | 0.26
.37
.53 | A.
A.
B. | | JanuaryFebruary | 16,200
25,800 | 2,030 | 4,750
5,970 | 3.34
4.21 | 3.85
4.38 | В. | | March
April
May | 9,100 | 1,330
1,010
744 | 2, 260
2, 950
1, 230 | 1.59
2.08
.866 | 1.83
2.32
1.00 | A.
A. | | June
July | 702
17,800 | 315
1,170 | 479
4,370 | .337
3.08 | .38
3.55 | A.
A. | | AugustSeptember | 8, 260
7, 180 | 1,190
755 | 3, 140
2, 160 | 2. 21
1. 52 | 2.55
1.70 | A.
A. |
| The year | 25,800 | 255 | 2,380 | 1.68 | 22.72 | 1 | a See "Diversions" in station description. ## CHEMUNG RIVER AT CHEMUNG, N. Y. Location.—At the new highway bridge, about midway between Chemung, Chemung County, N.Y., and Willawana, Pa., half a mile upstream from the State line and about 10 miles above the mouth. Drainage area.—2,440 square miles. RECORDS AVAILABLE.—September 11, 1903, to September 30, 1915. Data also in the annual reports of the New York state engineer and surveyor and State of New York Conservation Commission. GAGE.—Tape gage on the new highway bridge; read twice daily by D. L. Orcutt. DISCHARGE MEASUREMENTS.—Made from the bridge. CHANNEL AND CONTROL.—Sand and gravel; somewhat shifting. EXTREMES OF STAGE.—Maximum stage recorded during the year, 16.42 feet at 1 p.m., February 25 (discharge, 47,000 second-feet); minimum stage recorded, 1.84 feet at 6 a.m., October 8, and 6.30 a.m., November 6 (discharge, 175 second-feet). 1903-1915: Maximum stage recorded, 16.5 feet at 6.30 a. m., March 27, 1913 (discharge, 52,500 second-feet); minimum stage recorded, 1.47 feet at 7 a. m., August 14, 1911 (discharge, 49 second-feet). WINTER FLOW.—Discharge relation affected by ice. REGULATION.—Power is developed above the station, the largest plant being at Elmira, N. Y. ACCURACY.—Results good. Discharge measurements of Chemung River at Chemung, N. Y., during the year ending Sept. 30, 1915. | Date. | Made by- | Gage
height. | Dis-
charge. | Date. | Made by | Gage
height. | Dis-
charge. | |------------------------------------|---------------------------------|--|---|---|-----------------------------------|---------------------------|--| | Nov. 5
5
Feb. 16
17
19 | C. S. De Golyerdo R. M. Adamsdo | Feet.
1.90
1.90
12.29
8.60
6.10 | Secft.
209
200
28,900
14,700
6,870 | Mar. 12
May 6
June 13
Sept. 27 | R. M. Adams
C. C. Covert
do | Feet. 3.53 4.16 2.17 2.45 | Secft.
1,610
2,680
392
564 | Daily discharge, in second-feet, of Chemung River at Chemung, N. Y., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------------------------|--|-------------------------------------|---------------------------------|--|--|--|---|--|---------------------------------|--|--|---| | 1
2
3 | 239
216
210 | 204
210
204 | 412
412
474 | | 1,900
5,820
5,570 | 5, 570
4, 640
3, 800 | 2,050
1,900
1,760 | 2,200
2,520
2,050 | 808
725
645 | • 3,220
3,600
8,900 | 2,860
10,100
7,720 | 1,370
1,140
1,040 | | 5 | 210
204 | 204
199 | 605
560 | | 4, 210
3, 410 | 2,860
2,690 | 1,620
1,490 | 1,760
2,360 | 645
605 | 7,720
4,860 | 15,800
8,900 | 895
850 | | 6
7
8
9
10 | 194
189
180
189
184 | 184
184
194
222
210 | 488
467
474
474
523 | 18,600
30,600
11,000
6,070 | 3,410
4,000
3,410
2,860
2,360 | 2,520
2,360
2,200
1,900
1,760 | 2,050
8,010
7,150
8,300
9,200 | 2,690
2,050
2,360
2,860
2,200 | 545
516
460
446
406 | 3,800
2,360
.8,600
30,600
11,300 | 9,500
7,720
5,090
4,420
3,410 | 808
850
1,200
1,200
940 | | 11
12
13
14 | 239
216
199
216
216 | 239
239
251
251
263 | 560
568
453
426 | 4, 420
3, 410
2, 360
2, 360
2, 860 | 2,050
2,200
3,410
4,860
17,900 | 1,760
1,760
1,490
1,490
1,620 | 10, 100
8, 900
6, 070
4, 210
3, 220 | 1,760
1,490
1,310
1,200
1,090 | 406
406
372
366
366 | 5,820
7,430
6,870
6,600
4,210 | 3, 220
2, 520
2, 690
2, 360
1, 900 | 808
725
685
- 685
685 | | 16 | 251
276
282
326
326 | 392
1,430
1,090
808
685 | | 2,860
2,520
3,410
13,700
14,000 | 30, 200
15, 100
9, 500
6, 870
5, 820 | 1,900
2,200
1,900
1,620
1,760 | 2,690
2,360
2,200
1,900
1,620 | 990
990
1,140
1,090
940 | 460
446
453
366
333 | 2,860
4,640
8,300
3,600
2,690 | 1,760
1,620
1,490
1,310
1,140 | 645
645
605
725
2, 050 | | 21 | 366
352
288
276
234 | 575
516
419
419
419 | | 8,600
5,570
4,420
3,800
3,410 | 5,570
6,600
9,800
29,000
44,200 | 2,050
2,050
2,050
3,220
4,210 | 1,490
1,370
1,250
1,140
1,140 | 850
1,140
2,050
1,620
1,430 | 333
320
339
372
412 | 2,200
1,760
1,560
1,490
1,370 | 1,040
11,600
9,500
5,570
3,410 | 1,200
1,090
990
765
685 | | 26 | 251
288
194
199
210
204 | 419
433
392
552
467 | | 3,040
2,690
2,690
2,050
1,310
1,310 | 22,600
11;600
7.430 | 6,070
4,420
3,410
3,410
2,860
2,360 | 1,040
940
2,050
4,860
3,410 | 1,430
1,370
1,370
1,140
940
850 | 379
326
301
257
339 | 1,140
4,210
5,090
2,860
2,360
2,520 | 3,040
2,200
1,760
1,490
1,760
1,620 | 645
560
545
545
516 | Note.—Discharge determined from a well-defined rating curve. Discharge relation affected by ice from Dec. 15 to Jan. 6; discharge estimated as follows: Dec. 15-31, 379 second-feet; Jan. 1-6, 615 second-feet. Monthly discharge of Chemung River at Chemung, N. Y., for the year ending Sept. 30, 1915. [Drainage area, 2,440 square miles.] | | D | Discharge in second-feet. | | | | | | | |---------------------------|-----------------|---------------------------|-----------------------|-------------------------|--|----------------|--|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | | | October November December | 1,430 | 180
184 | 239
409
430 | 0.098
.168
.176 | 0.11
.19
.20 | В.
В.
С. | | | | January | 30,600 | 1,900 | 5, 190
9, 700 | 2.13
3 98 | 2. 46
4. 14 | Č.
B. | | | | MarchApril | 6,070
10,100 | 1,490
940 | 2,710
3,520 | 1.11
1.44 | 1.28
1.61 | B.
A. | | | | May | 808 | 850
257
1,140 | 1,590
438
5,310 | . 652
. 179
2. 17 | .75
.20
2,50 | A.
A.
B. | | | | August | 15,800 | 1,140
1,140
516 | 4,470
870 | 1. 83
. 357 | 2.11
.40 | A.
A. | | | | The year | 44, 200 | 180 | 2,870 | 1.18 | 15.95 | | | | ## PATUXENT RIVER BASIN. #### PATUXENT RIVER NEAR BURTONSVILLE, MD. Location.—At the Columbia turnpike bridge, 1½ miles northeast of Burtonsville, Montgomery County, and about 4 miles northwest of Laurel. Drainage area.—127 square miles measured on topographic maps. RECORDS AVAILABLE.—July 21, 1911, to June 15, 1912 (records furnished by United States Engineer Office); July 21, 1913, to September 30, 1915. GAGE.—Stevens water-stage recorder referred to a staff gage in three sections on left bank about 80 feet below highway bridge; prior to July 23, 1914, a vertical staff fastened to left side of bridge pier; datum of recorder is 1.29 feet below that of gage on pier. Recorder is inspected weekly by Columbus Brashears. DISCHARGE MEASUREMENTS.—Made from bridge or by wading. CHANNEL AND CONTROL.—Banks are lined with trees and brush and overflow at stage of about 10 feet. Control is a flat gravel bar about 300 feet below bridge. Current is swift under bridge, but sluggish below bridge to control. Discharge measurements indicate that control remained practically permanent from 1911 to 1914, but shifted during the floods of January and February, 1915. EXTREMES OF DISCHARGE.—Maximum stage during year, 14.6 feet about 9 a.m. January 13, as indicated by flood mark on staff gage (discharge, 5,100 second-feet, based on poorly defined rating curve and may be subject to large error); minimum stage, from water-stage recorder, 1.52 feet at 4 a.m. November 8 (discharge, 15.6 second-feet). 1911-1915: Maximum stage recorded, 14.6 feet at about 9 a. m. January 13, 1915 (discharge, 5,100 second-feet, based on poorly defined rating curve and may be subject to large error); minimum stage, 0.18 foot August 25, 1911 (discharge, 6 second-feet). WINTER FLOW.—Discharge relation affected by ice during severe winters only. Accuracy.—Results fair prior to installation of recorder, as stream fluctuates rapidly during floods. Rating curves well defined except at high stages; gage-height record satisfactory and results good after installation of recorder. Discharge measurements of Patuxent River near Burtonsville, Md., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by | Gage
height. | Dis-
charge. | |-------------------------------|---------------|---|--|--------------------------------------|---|---------------------------------------|---| | Jan. 13
14
14
Feb. 4 | G. C. Stevens | Feet.
14.0
3.64
3.56
3.18
3.14 | Secft.
44,790
368
357
317
316 | June 2
12
12
12
Sept. 23 | Stevens
and Dean
H. J. Dean.
G. C. Stevens.
Bailey and Walters | Feet.
6.75
2.04
2.04
1.95 | Secft.
1,520
78.4
80.5
58.4 | a Surface velocity observed and coefficient of 0.85 used to reduce to mean velocity.; results poor. Daily discharge, in second-feet, of Patuxent River near Burtonsville, Md., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |------|----------------------------------|------------------------------------|---------------------------------------|--|-----------------------------------|--|---------------------------------|----------------------------------|--------------------------------|----------------------------------|--|----------------------------------| | 1 | 31.0 | 34
36
33
35
35 | 39
38
38
38
37 | 156
158
122
140
114 | 341
2,830
530
338
290 | 154
147
140
133
135 | 103
103
107
117
119 | 86
81
79
88
90 | 62
773
686
221
147 | 65
58
53
51
51 | 41
41
46
1,010 | 97
82
72
70
68 | | 6 | | 36
34
25.6
32
26.4 | 44
114
153
94
70 | 208
977
196
128
106 | 354
280
232
190
177 | 168
190
232
234
190 | 111
105
101
99
99 | 81
77
75
127
84 | 119
107
90
81
72 | 52
52
53
53
54 | 401
92
86
115
82 | 86
82
72
72
72
72 | | 11 | 29. 0
27. 2
29. 0
37 | 32
35
38
35
35
89 | 65
63
61
130
84 | 102
1, 490
3, 620
390
278 | 175
170
170
168
192 | 177
162
145
145
145 | 107
119
103
96
92 | 72
119
197
101
84 | 68
75
90
111
99 | 54
90
62
58
51 | 62
507
560
270
90 | 73
131
81
73
68 | | 16 | 78
61
41.5 | 196
61
47. 5
44
42. 5 | 83
80
78
74
97 | 216
230
521
351
246 | 309
190
168
156
147 | 137
133
125
125
137 | 90
88
86
84
84 | 113
127
96
84
79 | 119
99
150
86
81 | 67
68
50
747
190 | 75
67
64
58
54 | 67
65
73
145 | | 21 | 36 | 40.5
41.5
39 ·
45
41.5 | 259
210
130
122
114 | 202
170
176
210
194 | 145
139
139
383
349 | 129
123
121
119
115 | 86
81
84
88
88 | 84
121
180
97
88 | 72
75
75
65
62 | 84
70
64
60
57 | 58
62
49
45
45 | 61
55
54 | | 26 | 36
34
32
35
35
37 | 39
39
38
38
39 | 94
114
114
135
369
325 | 212
164
158
134
126
126 | 208
168
161 | 111
107
105
107
105
105 | 82
90
109
111
99 | 77
68
65
62
79
77 | 62
61
57
54
53 | 55
51
51
50
46
41 | 41
37.5
340
306
713
166 | 51
47.5
45
41
37.5 | Note.—Discharge determined as follows: Oct. 1 to Feb. 2, from a rating curve well defined below and fairly well defined above 1,000 second-feet; Feb. 3 to Sept. 30, from a rating curve well defined between 40 and 2,200 second-feet. Recorder not operating Oct. 2-11, 19-24, Feb. 28 to Mar. 3, July 5-10, and Sept. 20-22, discharge estimated as follows: Oct. 2-11, 30 second-feet; Oct. 19-24, 38 second-feet; Sept. 20-22, 80 second-feet; discharge interpolated Feb. 28 to Mar. 3 and July 5-10; discharge obtained by averaging hourly discharge for Nov. 15-16, Dec. 7-8, 14, 21-22, 29-31, Jan. 6-7, 12-14, 18, Feb. 1-3, 16, 24-25, May 13, 22-23, June 2-3, 18, July 19-20, Aug. 4, 6, 12-14, and 28-30. ## Monthly discharge of Patuxent River near Burtonsville, Md., for the year ending Sept. 30, 1915. [Drainage area, 127 square miles.] | | D | Run-off | | | | | |---|--|---|---|--|---|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in inches on drainage area). | Accu-
racy. | | October November December January February March April May June July August September | 196
369
3,620
2,830
234
119
197
773
747
1,010 | 25. 6
37
102
139
105
81
62
53
41
37. 5 | 35. 7
44. 9
112
375
325
142
97. 6
94. 8
132
84. 1
184 | 0. 281
. 354
. 882
2. 95
2. 56
1. 12
. 769
. 746
1. 04
. 662
1. 45 | 0. 32
. 40
1. 02
3. 40
2. 67
1. 29
. 86
. 86
1. 16
. 76
1. 67
. 64 | B.
A.
B.
B.
A.
A.
A. | | The year | | | 141 | 1.11 | 15,05 | | #### POTOMAC RIVER BASIN. POTOMAC RIVER AT POINT OF ROCKS, MD. LOCATION.—At the steel highway bridge at Point of Rocks, Frederick County, about one-third mile below Catoctin Creek and 6 miles above Monocacy River. Drainage area.—9,650 square miles. RECORDS AVAILABLE.—February 17, 1895, to September 30, 1915. Gage.—Chain, attached to bridge, read once daily by G. H. Hickman. Datum constant since September 2, 1902; prior to this date datum was 0.45 foot higher than at present. Sea-level elevation of gage datum is 200.54 feet. DISCHARGE MEASUREMENTS.—Made from the bridge. CHANNEL AND CONTROL.—Practically permanent. The control is a ledge a few hundred feet below the station, the ledge extending completely across the river except for one relatively unimportant channel. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 19.2 feet at 10 a. m., June 4 (discharge 132,000 second-feet); minimum stage recorded, 0.43 foot at 2 p. m., November 14 (discharge 643 second-feet). 1895–1914: Maximum stage recorded, 29.0 feet on March 2, 1902 (discharge 219,000 second-feet); minimum stage, 0.38 foot on September 10, 1914 (discharge, 540 second-feet). WINTER FLOW.—Discharge relation little affected by ice. Canal.—The Chesapeake & Ohio Canal parallels the Potomac on the Maryland side. The average discharge of the canal is 75 to 100 second-feet. The discharge is not included in the following tables. Accuracy.—Results excellent except at extreme low water, when measuring conditions are not good. The following discharge measurement was made by Stevens and Elwood: November 7, 1914: Gage height, 0.65 foot; discharge, 1,180 second-feet. Daily discharge, in second-feet, of Potomac River at Point of Rocks, Md., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |----------------------------|--|---|--|---|---|--|---|--|---|--|---|---| | 1
2
3
4
5 | 1,010 | 834
1,080
1,150
1,100
1,260 | 1,100
1,220
1,510
1,740
1,340 | 4,500
5,380
10,500
8,620
5,020 | 10,000
27,500
121,000
83,800
44,500 | 16,300
14,100
12,000
10,500
10,000 | 5,020
4,840
4,500
4,670
4,500 | 4,500
5,020
4,840
4,330
4,330 | 3,860
24,800
109,000
127,000
65,600 | 3,390
2,940
2,660
2,940
3,240 | 1,580
1,240
5,020
6,920
12,500 | 9,530
9,070
6,520
5,750
5,020 | | 6
7
8
9
10 | 706
1,220 | 1,510
1,100
1,120
1,510
1,220 | 2,380
3,540
13,000
15,700
13,000 | 5,380
9,530
80,500
66,400
37,100 | 33,500
23,600
22,300
20,400
19,800 | 9,530
9,070
9,070
9,070
10,000 | 4,330
4,010
3,860
3,860
4,170 | 3, 860
3, 860
3, 540
3, 390
3, 240 | 48,400
36,300
21,100
14,600
9,530 | 2,800
2,800
2,660
2,520
2,380 | 19,800
14,600
10,500
5,750
4,500 | 5,020
3,540
7,330
6,520
5,020 | | 11
12
13
14
15 | 966
922 | 878
769
685
643
727 | 12,000
11,500
12,000
8,620
8,180 | 21,700
27,500
57,300
56,400
33,500 | 15,200
14,100
13,000
10,000
24,200 | 9,070
9,070
10,000
9,070
8,180 | 4,500
4,670
5,380
5,750
5,750 | 4,840
5,020
4,840
4,500
4,330 | 10,500
5,380
6,520
6,130
9,530 | 2,380
2,660
2,520
2,800
2,520 | 4,500
9,530
8,620
4,500
3,860 | 5,020
4,500
4,010
3,700
3,540 | | 16
17
18
19
20 | 727
1,150
2,250
2,380
2,800 | 966
1,220
2,080
2,940
2,660 | 3,700
3,540
3,140
3,540
3,540 | 22,900
19,800
26,100
77,200
84,600 | 37, 100
34, 200
19, 800
16, 300
15, 200 | 7,330
8,180
7,330
8,180
7,330 | 5,380
5,020
4,670
4,330
4,010 | 4,840
5,750
5,380
5,020
5,750 | 14,100
14,600
12,500
10,500
9,070 | 2,380
2,250
2,660
3,090
3,090 | 3,540
4,010
3,700
3,540
3,700 | 3, 240
2, 940
2, 940
2, 800
7, 750 |
 21
22
23
24
25 | 2,120
1,990
1,940
1,790
1,460 | 2,380
2,520
2,660
2,800
2,120 | 4,010
4,330
4,500
6,520
8,620 | 63, 900
37, 100
22, 900
20, 400
16, 300 | 14,100
12,000
10,000
14,600
31,500 | 7,330
6,130
6,130
5,750
5,750 | 4,170
4,170
3,860
3,540
3,090 | 4,840
7,330
15,200
14,600
11,500 | 8,620
7,750
7,330
5,020
4,840 | 2,800
2,940
3,240
2,940
2,800 | 3,860
8,180
10,000
3,540
3,240 | 6, 130
11, 000
7, 750
6, 130
5, 750 | | 26 | 1,260
1,910
1,960
1,940
1,760
727 | 1,910
1,710
1,660
1,560
1,460 | 9,070
5,380
5,750
4,330
4,670
4,500 | 14, 100
12, 000
11, 000
10, 000
10, 000
9, 070 | 26, 100
25, 500
17, 400 | 4,670
5,020
4,670
5,750
5,380
5,020 | 4,010
4,010
4,010
3,860
3,090 | 9,070
7,750
5,750
5,380
5,380
5,020 | 3,540
4,170
3,860
3,700
3,540 | 2,520
2,380
2,250
2,120
2,120
1,910 | 3,540
4,500
5,750
11,000
10,000
14,100 | 5,020
4,670
4,010
3,090
3,090 | Note.—Discharge determined from a rating curve well defined except at extreme low stages. Monthly discharge of Potomac River at Point of Rocks, Md., for the year ending Sept. 30, 1915. ## [Drainage area, 9,650 square miles.] | , | D | Run-off | | | | | |--|--|---|--|---|--|--| | Month. | Maximum. | Minimum. | Mean. Per square mile. | | (depth in
Inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June July August September The year | 2, 940
15, 700
84, 600
121, 000
16, 300
5, 750
15, 200
127, 000
3, 390
19, 800
11, 000 | 706
643
1,100
4,500
10,000
4,670
3,090
3,240
3,540
1,910
1,240
2,800 | 1, 400
1, 540
6,000
28, 600
27, 000
8, 230
4, 370
5, 900
20, 400
2, 670
6, 760
5, 350 | 0. 145
. 160
. 622
2. 96
2. 80
. 853
. 453
. 611
2. 11
. 277
. 699
. 554 | 0.17
.18
.72
3.41
2.92
.98
.51
.70
2.35
.32
.81
.62 | B. B. A. | ## MONOCACY RIVER NEAR FREDERICK, MD. LOCATION.—At county bridge on toll road leading from Frederick, Frederick County, to Mount Pleasant, about 3,000 feet below Tuscarora Creek (entering from the right) and about 2,000 feet above Israel Creek (entering from the left). Drainage area.—660 square miles. RECORDS AVAILABLE.—August 4, 1896, to September 30, 1915. Gage.—Chain attached to downstream side of right span of bridge; read once daily (oftener during floods) by Eugene L. Derr. DISCHARGE MEASUREMENTS.—Made from the bridge or by wading. Channel and control.—Banks lined with trees and brush; overflow at high stages; bed composed of gravel and bowlders and shifting during extreme floods. Control not well defined. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 27.2 feet at 11 a. m. January 13 (discharge, determined from extension of rating curve, 21,700 second-feet); minimum stage recorded, 3.75 feet on several days in October (discharge, 30 second-feet). 1896-1915: Maximum stage January 13, 1915 (see preceding paragraph); minimum stage, 3.54 feet on several days in October, 1910 (discharge, 15 second-feet). Winter flow.—Discharge relation affected by ice only during severe winters. Accuracy.—Gage-height record reliable; discharge relation subject to change at high stages; rating curves poorly defined at high stages; results good at low and medium stages only. Discharge measurements of Monocacy River near Frederick, Md., during the year ending Sept. 30, 1915. | Date. | Made by— | Gage
height. | Dis-
charge. | Date. | Made by— | Gage
height. | Dis-
charge. | |------------------|-------------------------------------|-----------------------|---------------------------|---------|------------------|-----------------|-----------------| | Nov. 6
Feb. 4 | Stevens and Elwood
G. C. Stevens | Feet.
3.98
8.73 | Secft.
66. 7
2, 500 | Apr. 20 | Stevens and Zens | Feet. 4. 72 | Secft.
246 | Daily discharge, in second-feet, of Monocacy River near Frederick, Md., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |----------------|------------|------------|------------|-----------------|-------------------------|----------------|------------|----------------|-----------------|-------------------|-----------------|-----------------------------------| | 1., | 30 | 59 | 89 | 545 | 1,960 | 1 220 | 302 | 226 | 370 | 226 | 146 | 950 | | 2 | 30 | 59 | 89 | 498 | 17, 100 | 1,230
1,000 | 302 | 212 | 4,940
14,800 | 318 | 122 | 682 | | 3
4 | 30
30 | 59
59 | 89
101 | 370
331 | 7,980 | 900 | 286 | 184 | 14,800 | 212
198 | 5,840
9,460 | 525 | | 5 | 43 | 59
59 | 113 | 259 | 7,980
2,710
2,260 | 800
800 | 286
270 | 226
212 | 2,260
1,890 | 212 | 2,030 | 465
445 | | 6 | 43
43 | 59
50 | 113
167 | 227
13,000 | 3,370
2,870 | 850
850 | 255
255 | 184
184 | 1,480
1,110 | 212
171 | 13,000
2,100 | 1,680
10,800
3,030
2,100 | | 8 | 43 | 50 | 1.250 | 7,360 | 1,820 | 850 | 255
255 | 184 | 850 | 184 | 1,000 | 3,030 | | 8
9
10 | 43 | 50 | 1,110 | 2,330 | 1,170 | 1.060 | 240 | 184 | 485 | 171 | 850 | 2,100 | | | 30 | 50 | 593 | 1,230 | 900 | 1,000 | 240 | 171 | 615 | 171 | 705 | 1,230 | | 11 | 30 | 68 | 498 | 1,100 | 800 | 950 | 405 | 158 | 570 | 68
198 | 615 | 850 | | 12 | 30
30 | 68
68 | 370
331 | 9,570
20,900 | 950
1,110 | 900
728 | 445
425 | 240
405 | 525
485 | 198 | 1,290
6,940 | 950
705 | | 13
14
15 | 43 | 68 | 259 | 8,310 | 1,110
2,400 | 638 | 286 | 302 | 1,540
570 | 270
171
171 | 1.060 | 548 | | 15 | 59 | 312 | 197 | 4,180 | 2,400 | 615 | 270 | 240 | 570 | 171 | 1,060
615 | 525 | | 16 | 390 | 2,580 | 227 | 2,200 | 5,240 | 570 | 255 | 212 | 525 | 68 | 525 | 445 | | 17
18 | 212 | 2,130 | 370 | 2,200 | 2,330
1,610 | 570 | 240 | 240 | 485 | 318 | 445 | 388 | | 18 | 182
126 | 259
197 | 370
259 | 6,040
5,740 | 1,610 | 570
548 | 240
240 | 270
226 | 548
485 | 158
134 | 405
352 | 388
425 | | 19
20 | 78 | 153 | 276 | 2,180 | 1,110 | 505 | 240 | 226 | 465 | 158 | 335 | 660 | | 21 | 78 | 113 | 331 | 1,960 | 950 | 485 | 240 | 212 | 445 | 134 | 318 | 660 | | 22 | 59 | 101 | 259 | 1,350 | 900 | 465 | 240 | 2,260
2,710 | 388 | 122 | 425 | 950 | | 23
24 | 59
59 | 101
89 | 370
643 | 1,110
1,110 | 850
8,730 | 445
425 | 226
226 | 660 | 335
302 | 134
122 | 1,000
425 | 485
370 | | 25 | 59 | 89 | 545 | 1,890 | 9,780 | 405 | 226 | 592 | 270 | 122 | 405 | 335 | | 26 | 59 | 89 | 545 | 1,820 | 2,630 | 370 | 212 | 445 | 255 | 99 | 370 | 302 | | 27
28 | 59
59 | 89
78 | 618
593 | 1,170
1,110 | 2,260
1,350 | 370
352 | 212
212 | 405
335 | 286
270 | 78
88 | 286
525 | 270
286 | | 29 | 59 | 89 | 569 | 950 | 1,000 | 335 | 226 | 302 | 255 | 110 | 3,550 | 255 | | 30 | 59 | 89 | 1,110 | 615 | | 318 | 240 | 352 | 226 | 134 | 2,180 | 240 | | 31 | 59 | | 1,050 | 615 | | 302 | | 425 | | 318 | 3,460 | | | | | l | l | l | l | · | <u> </u> | l | l | l | | l | Note.—Discharge determined as follows: Oct. 1 to Jan. 6, from a rating curve well defined between 50 and 140 second-feet and fairly well defined above 140 second-feet except at extremely high stages; Jan. 23 to Sept. 30, from a rating curve well defined between 50 and 3,500 second-feet and only approximate above 5,000 second-feet; Jan. 7–22, by indirect method for shifting channels. Monthly discharge of Monocacy River near Frederick, Md., for the year ending Sept. 30, 1915. [Drainage area, 660 square miles.] | • | D | ischarge in s | econd-feet. | | Run-off | | |---|--|--|---|---|---|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June July August September | 2,580
1,250
20,900
17,100
1,230
445
2,710
14,800
318
13,000 | 30
50
89
227
800
302
212
158
226
68
122
240 | 71. 4
246
436
3,300
3,120
652
267
425
1,270
169
1,960 | 0. 108
. 373
. 661
5. 00
4. 73
. 988
. 405
. 644
1. 92
. 256
2. 97
1. 61 | 0.12
.42
.76
5.76
4.92
1.14
.45
.74
2.14
.30
3.42 | A. B. B. D. C. A. A. A. B. A. B. B. B. | | The year | 20,900 | 30 | 1,070 | 1.62 | 21.96 | | #### OCCOQUAN CREEK NEAR OCCOQUAN, VA.
LOCATION.—At Frank Davis's farm, about 1 mile above Beaverdam Creek, and about 4½ miles upstream and northwest of Occoquan, Prince William County. Drainage area.—546 square miles measured on topographic map. RECORDS AVAILABLE.—February 14, 1913, to September 30, 1915. GAGE.—Friez water stage recorder on left bank installed April 27, 1913, referred to an inclined staff on left bank about 150 feet upstream. Inspected twice a week by Miss Sadie Bradley. Previous to this date a temporary vertical staff on opposite bank. DISCHARGE MEASUREMENTS.—Made from cable about 75 feet below the recorder, or by wading. Channel and control.—Gravel and large rocks; control is practically permanent. Point of zero flow at 0.4 foot gage height. EXTREMES OF DISCHARGE.—Maximum stage during year, 21.2 feet during the afternoon of January 13, determined from flood mark on gage house (discharge determined from extension of rating curve, 20,900 second-feet); minimum stage recorded during year, 1.47 feet at 2.30 p. m. October 3; discharge, 12 second-feet. 1913–1915 maximum stage, 21.2 feet during the afternoon of January 13, 1915, determined from flood marks on gage house (discharge determined from extension of rating curve, 20,900 second-feet); minimum stage recorded, 1.39 feet, September 13–18, 1913; discharge 9.7 second-feet. WINTER FLOW.—Discharge relation affected by ice. Accuracy.—Well-defined rating curve has been developed. Results excellent except at extreme high and low stages. No discharge measurements made during the year. Daily discharge, in second-feet, of Occoquan Creek near Occoquan, Va., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | May. | June. | July. | Aug. | Sept. | |------|--|----------------------------|--------------------------------------|--|---------------------|--|------------------------------|----------------------------------|------------------------------|----------------------------------|---|----------------------------| | 1 | 13.0 | 17.0 | 31 | 516 | 439 | 478 | 121 | 160 | 72 | 70 | 39 | 500 | | 2 | 12.5 | 17.5 | 30 | 313 | 10,600 | 408 | 118 | 116 | 1,750 | 68 | 198 | 311 | | 3 | 12.0 | 18.0 | 32 | 208 | 7,870 | 365 | 121 | 100 | 12,400 | 75 | 146 | 234 | | 4 | 12.5 | 19.5 | 33 | 161 | 2,250 | 321 | 129 | 105 | 3,130 | 68 | 2,410 | 196 | | 5 | 13.5 | 20.0 | 37 | 120 | 1,580 | 285 | 140 | 111 | 1,110 | 66 | 1,730 | 165 | | 6 | 14.0 | 19.5 | 40 | 129 | 2,010 | 360 | 132 | 92 | 670 | 75 | 460 | 138 | | 7 | 14.0 | 18.5 | 97 | 3,370 | 2,320 | 807 | 120 | 77 | 510 | 75 | 318 | 130 | | 8 | 14.0 | 19.0 | 329 | 2,230 | 1,350 | 2,030 | 116 | 71 | 404 | 71 | 178 | 136 | | 9 | 14.0 | 20.5 | 288 | 904 | 835 | 1,470 | 110 | 68 | 314 | 62 | 345 | 118 | | 10 | 15.0 | 21.0 | 172 | 608 | 592 | 835 | 105 | 65 | 252 | 55 | 333 | 96 | | 11 | 15. 5 | 22.0 | 138 | 409 | 488 | 640 | 106 | 58 | 1210 | 48 | 201 | 80 | | | 15. 5 | 21.5 | 172 | 4,530 | 496 | 508 | 116 | 64 | 184 | 53 | 138 | 71 | | | 16. 0 | 22.0 | 174 | 18,300 | 520 | 410 | 120 | 120 | 168 | 50 | 163 | 64 | | | 16. 0 | 22.5 | 389 | 9,240 | 470 | 360 | 113 | 176 | 314 | 47 | 243 | 59 | | | 16. 5 | 61 | 445 | 1,750 | 435 | 336 | 102 | 121 | 304 | 46 | 150 | 56 | | 16 | 22.0 | 213 | 230 | 1,060 | 1,450 | 308 | 98 | 88 | 415 | 43 | 121 | 50 | | | 30 | 261 | 144 | 828 | 865 | 277 | 97 | 73 | 350 | 41 | 135 | 48 | | | 41 | 125 | 106 | 3,270 | 589 | 250 | 97 | 62 | 229 | 105 | 175 | 44 | | | 61 | 81 | 91 | 3,020 | 445 | 225 | 91 | 65 | 296 | 81 | 92 | 48 | | | 45 | 60 | 91 | 1,260 | 365 | 219 | 85 | 70 | 251 | 72 | 72 | 54 | | 21 | 35 | 46 | 132 | 970 | 340 | 219 | 84 | 70 | 200 | 82 | 71 | 64 | | | 34 | 38 | 722 | 612 | 322 | 200 | 81 | 67 | 148 | 67 | 85 | 85 | | | 32 | 33 | 466 | 490 | 301 | 183 | 81 | 558 | 118 | 59 | 84 | 68 | | | 26 | 29 | 302 | 646 | 1,100 | 174 | 77 | 228 | 102 | 53 | 80 | 62 | | | 22, 5 | 28 | 196 | 639 | 4,140 | 163 | 78 | 120 | 84 | 47 | 73 | 58 | | 26 | 21. 0
19. 5
20. 0
19. 5
18. 0
17. 0 | 30
30
31
31
32 | 140
110
92
92
189
838 | 1,400
745
600
495
354
325 | 1,280
737
570 | 158
146
140
136
132
129 | 82
80
81
400
295 | 86
77
60
59
61
68 | 81
226
183
98
77 | 43
39
35
35
33
32 | 61
49
59
992
1,850
1,820 | 52
46
36
35
36 | Note.—Discharge determined from a rating curve well defined between 13 and 9,820 second-feet. Discharge estimated because of ice Dec. 16-19 and 26-29. Discharge Nov. 15-17, Dec. 7-9, 14-15, 21-23, 30-31, Jan. 1-2, 9-16, 30-31, Feb. 1-6, 25, and June 2-4 obtained by averaging values for two-hour periods. Discharge Jan. 3-8, 17-29, Feb. 7-24, 26-28, Mar. 1-22, Apr. 29-30, May 1, 23-24, June 5-21, 27-28, Aug. 2-19, 29-31, and Sept. 1-6 obtained by use of a discharge integrator. Monthly discharge of Occoquan Creek near Occoquan, Va., for the year ending Sept. 30, 1915. | [Drainage area, 546 square miles.] | Drainage | area. | 546 | square | miles. | |------------------------------------|----------|-------|-----|--------|--------| |------------------------------------|----------|-------|-----|--------|--------| | | D | Run-off | | | | | |--|---|---|--|--|--|--| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December January February March April. May June July August. September. | 261
838
18,300
10,600
2,030
400
558
12,400
105
2,410 | 12. 0
17. 0
30
120
301
129
77
58
72
32
39
35 | 21. 9
46. 9
205
1, 920
1, 600
409
119
107
822
57. 9
415
105 | 0. 040
.086
.375
3.52
2.93
.749
.218
.196
1.51
.106
.760
.192 | 0.05
.10
.43
4.06
3.05
.86
.24
.23
1.68
.12
.88
.21 | A.
A.
A.
A.
A.
A.
A.
A.
A.
A. | #### RAPPAHANNOCK RIVER BASIN. RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA. LOCATION.—About 3½ miles above Fredericksburg, Spotsylvania County, and about 1½ miles above the dam of the Spottsylvania Power Co. Drainage area.—1,590 square miles. RECORDS AVAILABLE.—September 19, 1907, to September 30, 1915 GAGE.—Vertical staff on right bank installed November 4, 1913, to replace chain gage destroyed October 31, 1913. Original gage was a vertical staff, which was destroyed February 14, 1908, and replaced February 20, 1908, by a chain gage under the cable. All three gages were referred to the same datum and the locations were practically the same. Gage read twice daily by J. W. Franklin. DISCHARGE MEASUREMENTS.—Made from cable at the gage. At extreme low water measurements can be made by wading or from a bridge over the power canal below the dam. CHANNEL AND CONTROL.—Both banks wooded; right bank will overflow at stage of about 15 feet, left bank at about 12 feet. One channel, bed composed of bowlders and somewhat rough. Current sluggish at extreme low water. Control is a rocky section a few hundred feet below the gage, and has remained practically per, manent. EXTREMES OF DISCHARGE.—Maximum stage recorded during year, 11.0 feet January 13, determined by leveling from flood marks (discharge determined from extension of rating curve, 36,300 second-feet); minimum stage recorded, 0.38 foot afternoon of October 6 (discharge, 88 second-feet). 1907–1915: Maximum stage recorded, 11.0 feet January 13, determined by leveling from flood marks (discharge determined from extension of rating curve-36,300 second-feet); minimum stage recorded, 0.30 foot at 3 p. m. August 21, 1914 (discharge 72 second-feet). WINTERFLOW.—Discharge relation not seriously affected by ice. Accuracy.—Rating curve well defined except at extreme low and high stages. Gageheight record reliable and results good. The following discharge measurements was made by G. C. Stevens: January 20, 1915: Gage height, 3.92 feet; discharge, 4,970 second-feet. Daily discharge, in second-feet, of Rappahannock River near Fredericksburg, Va., for the year ending Sept. 30, 1915. | Day. | Oct. | Nov. | Dec. | Jan. | Feb. | Mar. | Apr. | Мау. | June. | July. | Aug. | Sept. | |----------------------------|---------------------------------------|--|--|--|---|---|---------------------------------|--|---|--|---|---| | 1 | 108
110
110
106
101 | 225
216
212
212
212
208 | 369
388
462
455
448 | 2,080
1,770
1,420
1,220
1,100 | 1,920
19,600
15,000
7,380
4,850 | 2,570
2,400
2,000
1,840
1,700 | 918
918
918
918
918 | 750
616
542
598
636 | 918
6,190
18,200
10,900
4,850 | 560
656
656
534
578 | 502
578
805
13,700
20,100 | 4,140
2,240
2,240
2,000
1,770 | |
6
7
8
9
10 | 92
104
115
121
121 | 208
204
191
216
235 | 1,100
2,570
3,100
2,240
1,620 | 860
6,800
4,600
3,300
2,300 | 5,360
4,610
3,700
3,100
2,570 | 1,840
2,920
3,290
2,570
2,080 | 918
860
860
860
805 | 687
518
462
502
486 | 3,290
2,570
2,240
1,770
1,480 | 805
636
526
462
448 | 5,630
2,570
1,700
2,570
2,240 | 1,560
2,400
2,080
1,700
1,560 | | 11 | 121
113
115
118 | 245
212
208
204
388 | 1,770
1,620
1,620
2,570
2,080 | 1,800
9,000
36,300
18,000
6,000 | 2,400
2,240
2,080
2,000
1,920 | 1,840
1,700
1,620
1,480
1,480 | 750
860
805
750
750 | 448
486
805
1,100
687 | 1,350
1,220
1,100
1,040
1,920 | 432
402
440
425
369 | 1,420
1,040
4,370
2,000
1,350 | 1,350
1,220
1,100
1,040
918 | | 16
17
18
19
20 | 1,040
3,490
1,280
750
534 | 6,770
2,400
1,280
975
750 | 1,350
860
918
918
1,220 | 3,800
3,000
6,500
6,000
5,100 | 2,570
2,400
2,080
1,700
1,620 | 1,420
1,350
1,280
1,220
1,220 | 750
750
740
708
687 | 486
440
502
486
486 | 3,100
2,240
1,560
1,220
1,220 | 369
418
355
462
410 | 3,290
2,080
1,280
1,040
805 | 805
750
718
2,400
2,240 | | 21 | 355
317
294 | 645
607
542
526
410 | 1,700
3,290
2,000
1,480
1,280 | 4,850
3,290
2,740
2,400
2,570 | 1,560
1,480
1,480
1,840
12,000 | 1,280
1,220
1,160
1,100
1,100 | 666
666
687
740
729 | 486
542
560
526
486 | 1,100
918
860
750
687 | 1,350
1,040
805
636
687 | 740
975
1,100
750
718 | 1,220
1,480
1,040
918
805 | | 26 | 276
260
235 | 402
402
382
382
382 | 1,160
918
918
1,220
2,000
2,920 | 3,100
2,740
2,400
2,240
1,920
1,770 | 5,630
3,490
2,920 | 975 | 687
656
616
578
805 | 448
382
388
388
440
645 | 666
687
750
687
616 | 502
440
410
369
740
645 | 729
607
626
10,900
5,910
9,030 | 740
687
656
607
1,700 | Note.—Gage removed by ice Jan. 7; replaced Jan. 20. Crest height of flood Jan. 13 determined by leveling from flood marks on bank Jan. 20. Discharge determined from rating curve well defined above 500 second-feet and fairly well defined below. Discharge Jan. 7–12 and 14–19 estimated by comparison with records for adjacent streams. Monthly discharge of Rappahannock River near Fredericksburg, Va., for the year ending Sept. 30, 1915. [Drainage area, 1,590 square miles.] | | . D | Run-off | | | | | |--|--|---|--|---|--|----------------------------------| | Month. | Maximum. | Minimum. | Mean. | Per
square
mile. | (depth in
inches on
drainage
area). | Accu-
racy. | | October November December January February March April May June June July August September | 6,770
3,290
36,300
19,600
3,290
918
1,100
18,200
1,350
20,100 | 92
191
369
860
1,480
918
578
382
616
355
502
607 | 386
675
1,500
4,870
4,270
1,600
776
549
2,540
567
3,260
1,470 | 0. 243
• 425
• 943
3. 06
2. 69
1. 01
• 488
• 345
1. 60
• 357
2. 05
• 925 | 0. 28
. 47
1. 09
3. 53
2. 80
1. 16
. 54
. 40
1. 78
. 41
2. 36
1. 03 | B. A. | | The year | 36,300 | 92 | 1,860 | 1.17 | 15, 85 | | ## MISCELLANEOUS MEASUREMENTS. Miscellaneous discharge measurements in North Atlantic slope basins during the year ending Sept. 30, 1915. | Date. | Stream. | Tributary to- | Locality. | Gage
height. | Dis-
charge. | |---------------------|------------------------|------------------|---|-----------------|-----------------| | Oct. 7 | Pemigewasset
River. | Merrimack River | Gaging station at Plymouth, N. H | Feet.
-0.08 | Secft.
149 | | Aug. 28
Sept. 29 | do | do | Steel highway bridge in Chester, Mass. | 1.96
2.44 | 1,090
35 | | Nov. 7 | Womenshenuk
Brook. | Housatonic River | Mouth, about one-eighth mile south-
east of Gaylordsville, Conn. | | 1.0 | | 8 | Tenmile River | do | Mouth, about 2 miles northwest of Gaylordsville. Conn. | | 26 | | June 18 | Goose Creek | Potomac River | Former gaging station at Evergreen
Mills, near Leesburg, Va. | 2.34 | 363 | ## INDEX. | A. Page | . Page. | |--|--| | Accuracy, degree of | 3 Covert, C. C., work of | | | 4 Current meter, view of | | Acre-foot, definition of | 8 | | | D. | | | Danforth, G. C., work of | | Albion, R. I., Blackstone River at 67-6 | | | Alplaus River near Charlton, N. Y. 126-13 | 1 ' | | | | | Amherst, Maine, West Branch of Union River | Dead River at The Forks, Maine 38-39 | | at | | | Androscoggin River at Berlin, N. H 47-4 | | | at Errol dam, N. H | | | at Rumford Falls, Maine 49- | 0 De Golyer, C. S., work of | | Androscoggin River basin, N. HMaine, | Delaware River at Port Jervis, N. Y 130-131 | | stream flow in 46- | 4 at Riegelsville, N. J | | Appropriations, table of | 7 Delaware River, East Branch, at Fish Eddy | | Authorization of work | 7 N. Y | | Aziscohos dam, Maine, Magalloway River at. | 1 Delaware River, West Branch, at Hale | | T | Eddy, N. Y 135-136 | | В. | Delaware River basin, N. YN. J., stream | | Bangor, Maine, Kenduskeag Stream near 30-3 | 1 flow in | | Barnes, R. S., work of | Discharge, conversion of 9-10 | | Beaver Kill at Cooks Falls, N. Y 133-13 | 4 tables of 12 | | Bennetts Bridge, Conn., Pomperaug River | Discharge relations, definition of | | at 102–10 | 4 | | Berlin, N. H., Androscoggin River at 47-4 | | | Blackbridge, N. Y., West Branch of Sacan- | Eagle Bridge, N. Y., Hoosic River near 122-123 | | daga River at | | | Blackstone River at Albion, R. I | | | Blackstone River basin, R. I., stream flow in. 67- | | | | 1 • ' | | Borden Brook near Westfield, Mass 93-4 | - 1 | | | 2 Erving, Mass., Millers River at 75-78 | | | Evergreen Mills, Va., Goose Creek at 151 | | Burtonsville, Md., Patuxent River near 143-14 | ⁴ F. | | С, | | | | Falls Village, Conn., Housatonic River at 98-101 | | Cedar River near Indian Lake, N. Y 111-11 | | | Charlemont, Mass., Deerfield River at 78-8 | , , , | | Charlton, N. Y., Alplaus River near 126-12 | | | Chemung River at Chemung, N. Y 141-14 | . | | Chenango River near Chenango Forks, | River at 128–130 | | N. Y | 1,, | | Chester, Mass., West Branch of Westfield River | Foxcroft, Maine, Piscataquis River near 29-30 | | at 1/ | 1 Framingham, Mass., Sudbury River basin | | Clinton, Mass., South Branch of Nashua River | near | | basin near | Franklin Junction, N. H., Merrimack River | | Cobbossecontee Stream at Gardiner, Maine., 44- | 5 at | | Cochituate, Mass., Lake Cochituate basin | Frederick, Md., Monocacy River near 146-147 | | near 65,6 | 7 Frederick, Va., Rappahannock River near. 149-150 | | Computed results, accuracy of | 3 Fuller, E. S., work of | | Conklin, N. Y., Susquehanna River at 137-13 | 8 | | | G. | | Connecticut River at Orford, N. H 69-7 | | | at Sunderland, Mass | | | Connecticut River basin. N. HMassVt., | view of | | stream flow in | 1 | | Control, definition of | | | Cooks Falls, N. Y., Beaver Kill at 133-13 | | | Conneration details of | | | Page. | Page. |
--|---| | Gibbs Crossing, Mass., Ware River at 80-81 | Millers River at Erving, Mass 75-78 | | Goose Creek at Evergreen Mills, Va 151 | Millinocket, Maine, West Branch Penob- | | near Leesburg, Va 151 | scot River at 22-23 | | Goss Heights, Mass., Middle Branch of West- | Miner's inch, equivalents of | | field River at 89–90 | Mohawk River at Vischer Ferry dam, N. Y. 124-125 | | Great Barrington, Mass., Housatonic River | Monocacy River near Frederick, Md 146-147 | | near 96–97 | Moosehead Lake at east outlet, Maine 33-34 | | Grindstone, Maine, East Branch of Penobscot | N. | | River at | IV. | | | Nashua River basin, South Branch, near | | н. | Clinton, Mass 64-65 | | Hadley, N. Y., Sacandaga River at 119-120 | New Boston, Mass., Farmington River near 94-95 | | Hale Eddy, N. Y., West Branch of Delaware | New York, cooperation with | | River at | North Creek, N. Y., Hudson River at 104-105 | | Hartwell, O. W., work of | | | Hill, W. G., work of | 0. | | Hoosic River near Eagle Bridge, N. Y 122-123 | Occoquan Creek near Occoquan, Va 148-149 | | Hope, N. Y., Sacandaga River near 117-18 | Orford, N. H., Connecticut River at 69-70 | | Horsepower, calculation of | | | Housatonic River at Falls Village, Conn 98-101 | , P. | | at Gaylordsville, Conn 101-102 | Decree of Discourse Of Tabana Str. 70 Feb. | | near Great Barrington, Mass 96-97 | Passumpsic River near St. Johnsburg, Vt 72-74 | | Housatonic River basin, MassConn., stream | Patuxent River near Burtonsville, Md 143-144 | | flow in | Patuxent River basin, Md., stream flow in. 143-144 | | Hudson River at Mechanicsville, N. Y 110-111 | Pemigewasset River at Plymouth, N. H 151 | | at North Creek, N. Y 104-105 | Penobscot River at West Enfield, Maine 23-25 | | at Spier Falls, N. Y 108-109 | Penobscot River, East Branch, at Grind- | | at Thurman, N. Y 106-107 | stone, Maine 25-27 | | Hudson River basin, N. Y., stream flow in 104-128 | Penobscot River, West Branch, at Milli- | | and the second s | nocket, Maine | | ī. | Penobscot River basin, Maine, stream flow in. 22-31 | | Indian Lake, N. Y., Cedar River near 111-113 | Pierce's mills, Vt., Passumpsic River at 72-74 | | , | Piscataquis River near Foxcroft, Me 29-30 | | Indian Lake reservoir near | Pittsfield, Maine, Sebasticook River at 40-44 | | Indian River near 114-115 | Plymouth, N. H., Pemigewasset River at 151 | | J. | Point of Rocks, Md., Potomac River near. 145-146 | | James, W. A., work of | Pomperaug River at Bennetts Bridge, Conn 102-104 | | , , , | Port Jervis, N. J., Delaware River at 130-131 | | K. | Potomac River at Point of Rocks, Md 145-146 | | Kenduskeag Stream near Bangor, Maine 30-31 | Potomac River basin, MdVa., stream flow | | Kennebec River at The Forks, Maine 34-36 | in | | at Waterville, Maine 36-38 | Maine 54-5 | | Kennebec River basin, Maine, stream flow in. 33-45 | | | Kimmey, H., work of | Presumpscot River basin, Maine, stream flow | | Knightsville, Mass., Westfield River at 85-87 | in 54-55 | | ,, | ${f Q}.$ | | L. | Quaborg River at West Brimfield, Mass 84-85 | | Lake Cochituate basin near Cochituate, Mass. 65, 67 | Quantity in the west printing in mass | | Lawrence, Mass., Merrimack River at 62-63 | · R. | | Leesburg, Va., Goose Creek near | Down the amount Direct heads Was atmost days | | Little Androscoggin River near South Paris, | Rappahannock River basin, Va., stream flow | | Maine | in | | mano | Rappahannock River near Frederick, Va. 149-150 | | м. | Rating tables, use of | | Machine Dimond Whitmannille Maine 10.00 | Riegelsville, N. J., Delaware River at 132-133 | | Machias River at Whitneyville, Maine 18-20 | Riverbank, N. Y., Schroon River at 115-117 | | Machias River basin, Maine, stream flow in . 18-20 | Rumford Falls, Maine, Androscoggin River | | Magalloway River at Aziscohos dam, Maine. 51 | at | | Maine, cooperation with 14 | Run-off, definition of | | Massachusetts, cooperation with | s. | | Mattawamkeag River at Mattawamkeag, | George Diver at Todies NT N7 | | Maine | Sacandaga River at Hadley, N. Y 119-12 | | Mechanicsville, N. Y., Hudson River at 110-111 | near Hope, N. Y | | Merrimack'River at Franklin Junction, N. H. 57-59 | Sacandaga River, West Branch, at Black- | | at Garvins Falls, N. H | ridge, N. Y | | at Lawrence, Mass | near Wells, N. Y | | Merrimack River basin, N. HMass 57-67 | Saco River at West Buxton, Maine 56-56 | ## INDEX. | Page. | V. Pa | age. | |---|--|-------------| | Saco River basin, Maine, stream flow in 56-57 | Non Dune Maine St. John Diseaset | <i>o</i> 10 | | St. George River at Union, Maine 32-33 | Van Buren, Maine, St. John River at 10 | | | St. George River basın, Maine, stream flowin. 32-33 | Vermont, cooperation with | 14 | | St. John River at Fort Kent, Maine 14-16 | Vischer Ferry dam, N. Y., Mohawk River at 124 | -125 | | at Van Buren, Maine 16-18 | w. | | | St. John River basin, Maine, stream flow in . 14-18 | | ٠. | | St. Johnsbury, Vt., Passumpsic River near 72-74 | Walters, M. I., work of | 14 | | Sandy River near Farmingham, Maine 40 | Ware River at Gibbs Crossing, Mass 80 | | | Schroon River at Riverbank, N. Y 115-117 | Water-stage recorders, use of | 11 | | Sebago Lake outlet, Maine, Presumpscot | views of | 11 | | River at | Waterville, Maine, Kennebec River at 30 | 6-38 | | Sebasticook River at Pittsfield, Maine 40-44 | Wells, N. Y., West Branch Sacandaga River | | | Second-foot, definition of | near | | | South Paris, Maine, Little Androscoggin | West Brimfield, Mass., Quaborg River at 8 | | | River near 51-54 | West Buxton, Saco River at | | | Spier Falls, N. Y., Hudson River at 108-109 | West Enfield, Maine, Penobscot River at 2 | | | Stevens, G. C., work of | Westfield, Mass., Borden Brook near 93 | | | Sudbury River basin near Framingham, | Westfield Little River near 9 | | | Mass65-66 | Westfield River near | | | Sunderland, Mass., Connecticut River at 71-72 | Westfield Ltitle River near Westfield, Mass. 9 | | | Susquehanna River at Conklin, N. Y 137-138 | Westfield River at Knightville, Mass 8 | | | Susquehanna River basin, N. Y., stream | near Westfield, Mass | 7-89 | | flow in | Westfield River, Middle Branch, at Goss | | | Swift River at West Ware, Mass 82-83 | Heights, Mass 89 | 9-90 | | , | Westfield River, West Branch, at Chester, | | | . T. | Mass. | 151 | | Terms, definitions of 8-9 | West Hartford, Vt., White River at 7 | | | The Forks, Maine, Dead River at 38–39 | West Ware, Mass., Swift River at | | | Kennebec River at | White River at West Hartford, Vt | | | Thurman, N. Y., Hudson River at 106-107 | Whitneyville, Maine, Machias River at 18 | 5-20 | | Thweatt, Hardin, work of | Womenshenuk Brook near Gaylordsville, | 1 -1 | | In word, Indian, work of | Conn | 151 | | υ. | Work, division of | 14 | | *** | z . | | | Union, Maine, St. George River at 32-33 | - : | 9 | | Union River basin, Maine, stream flow in 20-22 | Zero flow, definition of | | | Union River, West Branch, at Amherst, Me. 20-21 | Zens, W. F., work of | 14 | # STREAM-GAGING STATIONS AND ## PUBLICATIONS RELATING TO WATER RESOURCES PART I. NORTH ATLANTIC SLOPE BASINS ## STREAM-GAGING STATIONS AND PUBLICATIONS RELAT-ING TO WATER RESOURCES. ## PART I. NORTH ATLANTIC SLOPE BASINS. ## INTRODUCTION. Investigation of water resources by the United States Geological Survey has consisted in large part of measurements of the volume of flow of streams and studies of the conditions affecting that flow, but it has comprised also investigation of such closely allied subjects as irrigation, water storage, water powers, underground waters, and quality of waters. Most of the results of these investigations have been published in the series of water-supply papers, but some have appeared in the bulletins, professional papers, and annual reports. The results
of stream-flow measurements are now published annually in 12 parts, each part covering an area whose boundaries coincide with natural drainage features as indicated below. - PART I. North Atlantic slope basins. - II. South Atlantic slope and eastern Gulf of Mexico basins. - III. Ohio River basin. - IV. St. Lawrence River basin. - V. Upper Mississippi River and Hudson Bay basins. - VI. Missouri River basin. - VII. Lower Mississippi River basin. - VIII. Western Gulf of Mexico basins. - IX. Colorado River basin. - X. Great Basin. - XI. Pacific slope basins in California. - XII. North Pacific slope basins (in three volumes). This appendix contains, in addition to the annotated list of publications relating specifically to the section, a similar list of reports that are of general interest in many sections and cover a wide range of hydrologic subjects; also brief references to reports published by State and other organizations (p. xxii). ## HOW GOVERNMENT REPORTS MAY BE OBTAINED OR CONSULTED. Water-supply papers and other publications of the United States Geological Survey containing data in regard to the water resources of the United States may be obtained or consulted as indicated below: - 1. Copies may be obtained free of charge by applying to the Director of the Geological Survey, Washington, D. C. The edition printed for free distribution is, however, small and is soon exhausted. - 2. Copies may be purchased at nominal cost from the Superintendent of Documents, Government Printing Office, Washington, D. C., who will on application furnish lists giving prices. - 3. Sets of the reports may be consulted in the libraries of the principal cities in the United States. - 4. Complete sets are available for consultation in the local offices of the water-resources branch of the Geological Survey as follows: Boston, Mass., Customhouse. Albany, N. Y., Room 19, Federal Building. Atlanta, Ga., Post Office Building. Madison, Wis., c/o Railroad Commission of Wisconsin. St. Paul, Minn., Old Capitol Building. Austin, Tex., Old Post Office Building. Helena, Mont., Montana National Bank Building. Denver, Colo., 403 New Post Office Building. Phoenix, Ariz., 417 Fleming Building. Salt Lake City, Utah, 421 Federal Building. Boise, Idaho, 615 Idaho Building. Tacoma, Wash., 406 Federal Building. Portland, Oreg., 416 Couch Building. San Francisco, Cal., 328 Customhouse. Los Angeles, Cal., 619 Federal Building. Honolulu, Hawaii, Kapiolani Building. A list of the Geological Survey's publications may be obtained by applying to the Director, United States Geological Survey, Washington, D. C. ## STREAM-FLOW REPORTS. Stream-flow records have been obtained at more than 3,800 points in the United States, and the data obtained have been published in the reports indicated in the following table: ## Stream-flow data in reports of the United States Geological Survey. ## [A=Annual Report; B=Bulletin; W=Water-Supply Paper.] | Report. | Character of data. | Year, | |-----------------------|--|---------------------------------| | 10th A, pt. 2 | Descriptive information only. Monthly discharge and descriptive information. | | | 11th A, pt. 2 | Monthly discharge and descriptive information | 1884 to Sept.,
1890. | | 12th A, pt. 2 | do | 1884 to June 30,
1891. | | 13th A, pt. 3 | Mean discharge in second-feet | 1884 to Dec. 31,
1892. | | 14th A, pt. 2 | Monthly discharge (long-time records, 1871 to 1893) | 1888 to Dec. 31,
1893. | | B 131 | Descriptions, measurements, gage heights, and ratings
Descriptive information only. | 1893 and 1894. | | B 140. | Descriptions, measurements, gage heights, ratings, and monthly discharge (also many data covering earlier years). | 1895. | | W 11
18th A, pt. 4 | Gage heights (also gage heights for earlier years) | 1896.
1895 and 18 96. | | W 15 | (also similar data for some earlier years).
Descriptions, measurements, and gage heights, eastern United
States, eastern Mississippi River, and Missouri River above | 1897. | | W 16 | junction with Kansas. Descriptions, measurements, and gage heights, western Mississippi Ri er below junction of Missouri and Platte, and | 1897. | | 19th A, pt. 4 | western United States. Descriptions, measurements, ratings, and monthly discharge | 1897. | | W 27 | (also some long-time records). Measurements, ratings, and gage heights, eastern United States, eastern Mississippi River, and Missouri River. | 1898. | | W 28 | Measurements, ratings, and gage heights, Arkansas River and western United States. | 1898. | | 20th A, pt. 4 | Monthly discharge (also for many earlier years) | 1898. | | W 35 to 39 | Descriptions, measurements, gage heights, and ratings | 1899. | | 21st A, pt. 4 | Monthly discharge. | 1899. | | W 47 to 52 | Descriptions, measurements, gage heights, and ratings | 1900. | | 22d A, pt. 4 | Monthly discharge | 1900. | | W 00,00 | Descriptions, measurements, gage heights, and ratings | 1901. | | W 10 | Complete data | 1901. | | W 02 to 00 | Monthly discharge. Complete data do | 1902. | | | .do. | | | W 165 to 178 | do | 1905. | | W 201 to 214 | do | 1906. | | W 241 to 252 | do | 1907-8. | | W 261 to 272 | do. | 1909. | | W 281 to 292 | dodo | 1910. | | W 301 to 312 | dodo | 1911. | | W 321 to 332 | do | 1912. | | W 351 to 362. | dodo | 1913x | | W 381 to 394 | do | 1914. | | W 401 to 415 | do, | 1915. | Note.-No data regarding stream flow are given in the 15th and 17th annual reports. The records at most of the stations discussed in these reports extend over a series of years, and miscellaneous measurements at many points other than regular gaging stations have been made each year. An index of the reports containing records obtained prior to 1904 has been published in Water-Supply Paper 119. The following table gives, by years and drainage basins, the numbers of papers on surface-water supply published from 1899 to 1914. The data for any particular station will be found in the reports covering the years during which the station was maintained. For example, data from 1902 to 1915 for any station in the area covered by Part III are published in Water-Supply Papers 83, 98, 128, 169, 205, 243, 263, 283, 303, 323, 353, 383, and 403, which contain records for the Ohio River basin for those years. Numbers of water-supply papers containing results of stream measurements, 1899-1915. | | basins. | Lower
Columbia
River and
Pacific
slope in
Oregon. | 8 55 | 6.83 | 135 | \$11,771 | 214 | 252 | 313 | 362C | 394 | | |-------|-----------------------------|--|-------------------|--|----------------------------|--------------|---------------|------------------------|--|------|----------------------|---| | XII . | North Pacific slope basins. | Snake
River
basin. | 88 12 | 8,5
5,85 | 135 | 178 | 214 | 252 | 312 | 362B | 393
413 | | | ; | North I | Pacific slope in Washing-tion and upper Columbia River. | 38 | 5,73
58.5 | 135 | 178 | 214 | 252 | 312 | 362A | 392
412 | - | | X | | Pacific
slope
in Cali-
fornia. | 38,739 | 66,75 | 32 | 171 | 213 | 251 | 311 | 361 | 391 | | | × | | Great
Basin. | 38, ¢ 39 | 86,75 | 133,7 134 | 176,r 177 | 212, 1213 | 250,r 251
270,r 271 | 888 | 388 | 380
410 | | | Ħ | | Colorado
River. | d 37,38 | 86,73 | 38 | 175, \$177 | 211 | 25 85
88 88 | 200 | 359 | 389 | | | VIII | - | Western
Gulf of
Mexico. | 37 | 86,73
28,53 | 132 | 174 | 210 | 248
888
888 | 888 | 328 | 388
408 | | | пл | | Lower
Missis-
sippi
Ríver. | 37 | 65, 66, 75
8 83, 75 | k 128, 131 | k 169, 173 | k 205, 209 | 247 | 302 | 357 | 387 | | | I | | Missouri
River. | e 36,37
49,350 | 2,7
2,7
3,7
3,7
3,7
3,7
3,7
3,7
3,7
3,7
3,7
3 | 130, q 131 | 172 | 808 | 246
286 | 888 | 356 | 88
90
90
90 | | | > | | Hudson
Bay and
upper
Missis-
sippi
River. | 36 | # 65, 96, 75
83, 85 | 198,99,m 100
k 128, 130 | 171 | 202 | 245 | 888 | 355 | 385 | | | ZI. | | St.
Lawrence
River and
Great
Lakes. | 88 | 1 82,75 | 120 | 170 | 506 | 28.5 | 368 | 354 | \$84
404 | | | 目 | | Ohio
River. | 36
48,149 | 68 | 88 | 169 | 202 | 243 | 888 | 353 | 88
89
89 | | | H . | South
Atlantic | and eastern Gulf of Mexico (James River to the Missis- sippi). | b 35,36 | 68,5 | p 126, 127 | p 167, 168 | p 203, 204 | 262 | 308 | 352 | 382 | | | H | | North
Atlantic
slope
(3t. John
River to
York
River). | 35
47, h 48 | 8
8 | n 124, o 125, | n 165,° 166, | " 201, o 202, | 878 | ## ## ## ## ## ## ## ## ## ## ## ## ## | 351 | 381
401 | | | | | Year. | 1899 a | 1902 | | 1905 | 1906 | 1907-8 | : : | : : | 1914 | | with Platte. * Tributaries of Mississippi from east. * Lake Ontario and tributaries to St. Lawrence River. a Rating tables and index to Water-Supply Papers 35-39 contained in Water-Supply Paper 39. Estimates for 1899 in Twenty-first Annual Report, Part IV. I James River only. c Gallatin River. d Green and Gunnison rivers and Grand River above junction with Gunnison. Mohave River only. f Kings and Kern rivers and south Pacific slope basins. • Rating tables and index to Water-Supply Papers 47-52 and data on precipitation, wells, and irrigation in California and Utah contained in Water-Supply Paper 52. Esti- mates for 1900 in Twenty-second Annual Report, Part IV Wissahickon and Schuylkill rivers to James River. Scioto River m Hudson Bay only. a New England rivers only. a New England rivers only. b Hudson River to Deleware River, inclusive. p Susquehama River to Yadkin River, inclusive. q Platic and Kanasa rivers. q Great Basin in California
except Truckee and Carson river basins. Rogue, Umpqua, and Siletz rivers only. Below junction with Gila. In these papers and in the following lists the stations are arranged in downstream order. The main stem of any river is determined by measuring or estimating its drainage area—that is, the headwater stream having the largest drainage area is considered the continuation of the main stream, and local changes in name and lake surface are disregarded. All stations from the source to the mouth of the main stem of the river are presented first, and the tributaries in regular order from source to mouth follow, the streams in each tributary basin being listed before those of the next basin below. The exceptions to this rule occur in the records for Mississippi River, which are given in four parts, as indicated on page III, and in the records for large lakes, where it is simpler to take up the streams in regular order around the rim of the lake than to cross back and forth over the lake surface. ### PRINCIPAL STREAMS. The principal streams flowing into the Atlantic Ocean between St. John River (Maine-New Brunswick) and York River, Va., are the St. Croix, Machias, Union, Penobscot, Kennebec, Androscoggin, Saco, Merrimack, Mystic, Blackstone, Connecticut, Hudson, Delaware, Susquehanna, Potomac, and Rappahannock. The streams drain wholly or in part the States of Connecticut, Delaware, Maine, Maryland, Massachusetts, New Jersey, New Hampshire, New York, Pennsylvania, Rhode Island, Vermont, Virginia, and West Virginia. This part contains, in addition to the annotated list of publications relating specifically to the section, a similar list of reports that are of general interest in many sections and cover a wide range of hydrologic subjects; also brief references to reports published by State and other organizations (p. XXII). #### GAGING STATIONS.1 Note.—Dash after date indicates that station was being maintained September 30, 1915. Period after a date indicates discontinuance. ST. JOHN RIVER BASIN. - St. John River near Dickey, Maine, 1910-11. - St. John River at Fort Kent, Maine, 1905- - St. John River at Van Buren, Maine, 1908- Allagash River near Allagash, Maine, 1910-11. · St. Francis River at St. Francis, Maine, 1910-11. Fish River at Wallagrass, Maine, 1903-1908; 1911. Madawaska River at St. Rose du Degele, Quebec, 1910-11. Aroostook River at Fort Fairfield, Maine, 1903-1910. ## ST. CROIX RIVER BASIN. - St. Croix River near Woodland (Spragues Falls), Maine, 1902-1911. - St. Croix River at Baring, Maine, 1914. West Branch of St. Croix River at Baileyville, Maine, 1910-1912. #### MACHIAS RIVER BASIN. Machias River at Whitneyville, Maine, 1903- #### UNION RIVER BASIN. Union River, West Branch (head of Union River), at Amherst, Maine, 1909-Union River, West Branch, near Mariaville, Maine, 1909. Union River at Ellsworth, Maine, 1909. East Branch of Union River near Waltham, Maine, 1909. Webb Brook at Waltham, Maine, 1909. Green Lake (head of Reeds Brook) at Green Lake, Maine, 1909-1912. Reeds Brook [Green Lake Stream] at Lakewood, Maine, 1909-1913. Branch Lake (head of Branch Lake Stream) near Ellsworth, Maine, 1909-1915. Branch Lake Stream near Ellsworth, Maine, 1909-1914. #### PENOBSCOT RIVER BASIN. Penobscot River, West Branch (head of Penobscot River), at Millinocket, Maine, 1901–Penobscot River at West Enfield, Maine, 1901– Penobscot River at Sunkhaze rips, near Costigan, Maine, 1899-1900. East Branch of Penobscot River at Grand Lake dam, Maine, 1912. East Branch of Penobscot River at Grindstone, Maine, 1902- Mattawamkeag River at Mattawamkeag, Maine, 1902- Piscataquis River near Foxcroft, Maine, 1902- Passadumkeag Stream: Cold Stream Pond (head of Cold Stream), Maine, 1900-1911 (record of opening and closing of pond). Cold Stream at Enfield, Maine, 1904-1906. Kenduskeag Stream near Bangor, Maine, 1908- Orland River: Phillips Lake outlet near East Holden, Maine, 1904-1908. ST. GEORGE RIVER BASIN. St. George River at Union, Maine, 1913- #### KENNEBEC RIVER BASIN. Moose River (head of Kennebec River) near Rockwood, Maine, 1902–1908; 1910–1912. Moosehead Lake (on Kennebec River) at Greenville, Maine, 1903–1906 (stage only). Moosehead Lake at east outlet, Maine (stage only), 1895- Kennebec River at The Forks, Maine, 1901- Kennebec River at Bingham, Maine, 1907–1910. Kennebec River at North Anson, Maine, 1901-1907. Kennebec River at Waterville, Maine, 1892- Kennebec River at Gardiner, Maine, 1785-1910 (record of opening and closing of navigation). Roach River at Roach River, Maine, 1901-1908. Dead River near The Forks, Maine, 1901-1907; 1910- Carrabassett River at North Anson, Maine, 1901-1907. Sandy River near Farmington, Maine, 1910- Sandy River near Madison, Maine, 1904-1908. Sebasticook River at Pittsfield, Maine, 1908- Messalonskee Stream at Waterville, Maine, 1903-1905. Cobbosseecontee Lake (on Cobbosseecontee Stream), Maine, 1839–1911 (dates of opening and closing). Cobbosseecontee Stream at Gardiner, Maine, 1890- #### ANDROSCOGGIN RIVER BASIN. Rangeley Lake (head of Androscoggin River), Maine, 1879–1911 (dates of opening and closing). Androscoggin River at Errol dam, N. H., 1905- Androscoggin River at Gorham, N. H., 1903 (fragmentary). Androscoggin River at Shelburne, N. H., 1903-1907; 1910. Androscoggin River at Rumford Falls, Maine, 1892-1903; 1905- Androscoggin River at Dixfield, Maine, 1902-1908. Magalloway River at Aziscohos dam, Maine, 1912- Auburn Lake, Maine, 1890-1911 (date of opening). Little Androscoggin River at Bisco Falls, near South Paris, Maine, 1913- #### PRESUMPSCOT RIVER BASIN. Presumpscot River at outlet of Sebago Lake, Maine, 1887- SACO RIVER BASIN. Saco River near Center Conway, N. H., 1903-1912. Saco River at West Buxton, Maine, 1907- ### MERRIMACK RIVER BASIN. Pemigewasset River (head of Merrimack River) at Plymouth, N. H., 1886-1913. Merrimack River at Franklin Junction, N. H., 1903- Merrimack River at Garvins Falls, N. H., 1904- Merrimack River at Lowell, Mass., 1848-1861; 1866-1915. Merrimack River at Lawrence, Mass., 1880- Middle Branch of Pemigewasset River at North Woodstock, N. H., 1911-12. Lake Winnepesaukee at Lakeport, N. H., 1860-1911. (Stage only.) Contoocook River at West Hopkinton, N. H., 1903-1907. Suncook River at East Pembroke, N. H., 1904-5. Souhegan River at Merrimack, N. H., 1909-1914. Nashua River: South Branch of Nashua River, Clinton, Mass., 1896- Concord River at Lowell, Mass., 1901- Sudbury River at Framingham, Mass., 1875- Lake Cochituate at Cochituate, Mass., 1863- ## MYSTIC RIVER BASIN. Mystic Lake (on Mystic River) near Boston, Mass., 1878-1897. CHARLES RIVER BASIN. Charles River at Waltham, Mass., 1903-1909. #### TAUNTON RIVER BASIN. Matfield River (head of Taunton River) at Elmwood, Mass., 1909-10. Satucket River near Elmwood, Mass., 1909-10. #### PROVIDENCE RIVER BASIN. ## Providence River: Seekonk River: Tenmile River near Rumford, R. I., 1909. Blackstone River at Woonsocket, R. I., 1904-5. Blackstone River at Albion, R. I., 1914-15. Blackstone River at Berkeley, R. I., 1901-2. Branch River at Branch Village, R. I., 1909-10; 1912-13. Woonasquatuckett River at Olneyville, R. I., 1910. #### PAWTUXET RIVER BASIN. Pawtuxet River at Harris, R. I., 1909. Pawcatuck River: PAWCATUCK RIVER BASIN. Wood River at Hope Valley, R. I., 1909-10. THAMES RIVER BASIN. Thames River: Quinebaug River: Shetucket River at Willimantic, Conn., 1904-5. CONNECTICUT RIVER BASIN. Connecticut River at Orford, N. H., 1900- Connecticut River at Sunderland, Mass., 1904- Connecticut River at Holyoke, Mass., 1880-1899. Connecticut River at Hartford, Conn., 1896-1908. Israel River above South Branch near Jefferson Highlands, N. H., 1903-1906. Israel River below South Branch at Jefferson Highlands, N. H., 1903-1907. Passumpsic River at Pierce's Mills, near St. Johnsbury, Vt., 1909- Passumpsic River at St. Johnsbury Center, Vt., 1903. Ammonoosuc River at Bretton Woods, N. H., 1903-1907. Zealand River near Twin Mountain, N. H., 1903-1907. Little River at Twin Mountain, N. H., 1904-5. White River at Sharon, Vt., 1903-1904; 1909-1913. White River at West Hartford, Vt., 1915- Ashuelot River at Winchester, N. H., 1903-1904. Ashuelot River at Hinsdale, N. H., 1907-1911. Millers River at Wendell, Mass., 1909-1913. Millers River at Erving, Mass., 1914- Moss Brook at Wendell, Mass., 1909-10. Deerfield River at Hoosac Tunnel, Mass., 1909–1913. Deerfield River at Charlemont, Mass., 1913- Deerfield River at Shelburne Falls, Mass., 1907-1913. Deerfield River at Deerfield, Mass., 1904-5. Ware River (head of Chicopee River) at Ware, Mass., 1904-1911. Ware River at Gibbs Crossing, Mass., 1912- Burnshirt River near Templeton, Mass., 1909. Swift River at West Ware, Mass., 1910- Quaboag River at West Warren, Mass., 1903-1907. Quaboag River at West Brimfield, Mass., 1909- Westfield River at Knightville, Mass., 1909- Westfield River at Russell, Mass., 1904-5. Westfield River near Westfield, Mass., 1914- Middle Branch of Westfield River at Goss Heights, Mass., 1910- Westfield Little River near Westfield, Mass, 1905- Borden Brook near Westfield, Mass., 1910- Farmington River near New Boston, Mass., 1913- Salmon River at Leesville, Conn., 1905-6. #### HOUSATONIC RIVER BASIN. Housatonic River near Great Barrington, Mass., 1913- Housatonic River at Falls Village, Conn., 1912- Housatonic River at Gaylordsville, Conn., 1900-1914. Tenmile River at Dover Plains, N. Y., 1901-1903. Pomperaug River at Bennetts Bridge, Conn., 1913- #### MIANUS RIVER BASIN. Mianus River at Bedford, N. Y., 1903. Mianus River near Stamford, Conn., 1903. #### BYRAM RIVER BASIN. Byram River, West Branch (head of Byram River), near Port Chester, N. Y., 1903. Byram River at Pemberwick, Conn., 1903. East Branch of Byram River near Greenwich, Conn., 1903. Middle Branch of Byram River near Riverville, Conn., 1903. #### HUDSON RIVER BASIN. Hudson River at North Creek, N. Y., 1907- Hudson River at Thurman, N. Y., 1907- Hudson River at Corinth, N. Y.,
1904-1912. Hudson River at Spier Falls, N. Y., 1912- Hudson River at Fort Edward, N. Y., 1899-1908. Hudson River at Mechanicville, N. Y., 1890- Cedar River near Indian Lake, N. Y., 1911- Indian Lake reservoir near Indian Lake, N. Y., 1900- Indian River near Indian Lake, N. Y., 1912–1914; 1915– Schroon Lake (on Schroon River) at Pottersville, N. Y., 1908-1911. Schroon River at Riverbank, N. Y., 1907-~ Schroon River at Warrensburg, N. Y., 1895-1902. Sacandaga River at Wells, N. Y., 1907-1911. Sacandaga River near Hope, N. Y., 1911- Sacandaga River at Northville, N. Y., 1907-1910. Sacandaga River near Hadley, N. Y., 1907-1910. Sacandaga River (at cable) at Hadley, N. Y., 1911- Sacandaga River at Union Bag & Paper Co.'s mill at Hadley, N. Y., 1909-1911. West Branch of Sacandaga River at Whitehouse, N. Y., 1910. West Branch of Sacandaga River at Blackbridge, near Wells, N. Y., 1911-Batten Kill at Battenville, N. Y., 1908. Fish Creek at Burgoyne, N. Y., 1905; 1908. Hoosic River near Eagle Bridge, N. Y., 1910- Hoosic River at Buskirk, N. Y., 1903-1908. Mohawk River at Ridge Mills, near Rome, N. Y., 1898-1900. Mohawk River at Utica, N. Y., 1901-1903. Mohawk River at Little Falls, N. Y., 1898-1909; 1912- Mohawk River at Rocky Rift dam, near Indian Castle, N. Y., 1901. Mohawk River at Tribes Hill, N. Y., 1912. Mohawk River at Schenectady, N. Y., 1899-1901. Mohawk River at Rexford Flats, N. Y., 1898-1901. Mohawk River at Vischer Ferry dam, N. Y., 1913- Mohawk River at Dunsbach Ferry, N. Y., 1898-1909. Ninemile Creek at Stittville, N. Y., 1898-99. Oriskany Creek at Coleman, N. Y., 1904-1906. Oriskany Creek at Wood-road bridge near Oriskany, N. Y., 1901-1904. Oriskany Creek at State dam near Oriskany, N. Y., 1898-1900. Saquoit Creek at New York Mills, N. Y., 1898-1900. Nail Creek at Utica, N. Y., 1904. Reels Creek near Deerfield, N. Y., 1901-1904. Reels Creek at Utica, N. Y., 1901-2. Johnson Brook at Deerfield, N. Y., 1903-1905. Hudson River tributaries-Continued. Mohawk River tributaries-Continued. Starch Factory Creek at New Hartford, N. Y., 1903-1906. Graefenberg Creek at New Hartford, N. Y., 1903-1906. Sylvan Glen Creek at New Hartford, N. Y., 1903-1906. West Canada Creek at Wilmurt, N. Y., 1912-13. West Canada Creek at Twin Rock bridge, near Trenton Falls, N. Y., 1900-1909. West Canada Creek at Poland, N. Y., 1913. West Canada Creek at Middleville, N. Y., 1898-1901. West Canada Creek at Kast Bridge, N. Y., 1905-1909; 1912-13. East Canada Creek at Dolgeville, N. Y., 1898-1909; 1912. Caroga Creek 3 miles above junction with Mohawk River, N. Y., 1898-99. Cayadutta Creek at Johnstown, N. Y., 1899-1900. Schoharie Creek at Prattsville, N. Y., 1902-1913. Schoharie Creek at Schoharie Falls, above Mill Point, N. Y., 1900-1901. Schoharie Creek at Mill Point, N. Y., 1900-1903. Schoharie Creek at Fort Hunter, N. Y., 1898-1901. Schoharie Creek at Erie Canal aqueduct, below Fort Hunter, N. Y., 1900. Alplaus Kill near Charlton, N. Y., 1913- Quacken Kill at Quackenkill, N. Y., 1894. Normans Kill at Frenchs Mill, N. Y., 1891. Kinderhook Creek at Wilsons dam, near Garfield, N. Y., 1892-1894. Kinderhook Creek at East Nassau, N. Y., 1892-1894. Kinderhook Creek at Rossman, N. Y., 1906-1909; 1911-1914. Catskill Creek at South Cairo, N. Y., 1901-1907. Esopus Creek at Olivebridge, N. Y., 1903-4. Esopus Creek near Olivebridge, N. Y., 1906-1913. Esopus Creek at Kingston, N. Y., 1901-1909. Esopus Creek at Mount Marion, N. Y., 1907-1913. Rondout Creek at Rosendale, N. Y., 1901-1903; 1906-1913. Diversion to Delaware and Hudson Canal at Rosendale, N. Y., 1901-1903; Wallkill River at Newpaltz, N. Y., 1901-1903. Wappinger Creek at Wappinger Falls, N. Y., 1903-1905. Fishkill Creek at Glenham, N. Y., 1901-1903. Foundry Brook at Cold Spring, N. Y., 1902-3. Croton River at Croton dam, near Croton Lake, N. Y., 1870-1899. #### PASSAIC RIVER BASIN. Passaic River at Millington, N. J., 1903-1906. Passaic River near Chatham, N. J., 1902-1911. Passaic River at Two Bridges (Mountain View), N. J., 1901-1903. Rockaway River at Boonton, N. J., 1903-4. Pompton River at Pompton Plains, N. J., 1903-4. Pompton River at Two Bridges (Mountain View), N. J., 1901-1903. Ramapo River near Mahwah, N. J., 1903-1906; 1908. Wanaque River at Wanaque, N. J., 1903-1905. #### RARITAN RIVER BASIN. Raritan River, South Branch (head of Raritan River), at Stanton, N. J., 1903-1906. Raritan River at Finderne, N. J., 1903-1907. Raritan River at Boundbrook, N. J., 1903-1909. North Branch of Raritan River at Pluckemin, N. J., 1903-1906. Millstone River at Millstone, N. J., 1903-4. #### DELAWARE RIVER BASIN. Delaware River, East Branch (head of Delaware River), at Fish's Eddy, N. Y., 1912–Delaware River, East Branch, at Hancock, N. Y., 1902–1912. Delaware River at Port Jervis, N. Y., 1904- Delaware River at Riegelsville, N. J., 1906- Delaware River at Lambertville, N. J., 1897-1908. Beaver Kill at Cooks Falls, N. Y., 1913- West Branch of Delaware River at Hale Eddy, N. Y., 1912- West Branch of Delaware River at Hancock, N. Y., 1902-1912. Mongaup River near Rio, N. Y., 1909-1913. Neversink River at Godeffroy, N. Y., 1903; 1909-10; 1911-1914. Neversink River at Port Jervis, N. Y., 1902-3. Paulins Kill at Columbia, N. J., 1908-9. Lehigh River at South Bethlehem, Pa., 1902-1905; 1909-1913. Lehigh River at Easton, Pa., 1909. Musconetcong River at Asbury, N. J., 1903. Musconetcong River near Bloomsbury, N. J., 1903-1907. Tohickon Creek at Point Pleasant, Pa., 1883-1889; 1901-1913. Neshaminy Creek below Forks, Pa., 1884-1913. Schuylkill River near Philadelphia, Pa., 1898-1912. Perkiomen Creek near Frederick, Pa., 1884-1913. Wissahickon Creek near Philadelphia, Pa., 1897-1902; 1905-6. #### SUSQUEHANNA RIVER BASIN. Susquehanna River at Colliersville, N. Y., 1907-8. Susquehanna River at Conklin, N. Y., 1912- Susquehanna River at Binghampton, N. Y., 1901-1912. Susquehanna River at Wysox, Pa., 1908-9. Susquehanna River at Wilkes-Barre, Pa., 1899–1913. Susquehanna River at Danville, Pa., 1899–1913. Susquehanna River at Harrisburg, Pa., 1891–1913. Susquehanna River at McCall Ferry, Pa., 1902–1909. Chenango River at South Oxford, N. Y., 1903. Chenango River near Greene, N. Y., 1908. Chenango River near Chenango Forks, N. Y., 1912- Chenango River at Binghampton, N. Y., 1901-1912. Eaton Brook, Madison County, N. Y., 1835. Madison Brook, Madison County, N. Y., 1835. Tioughnioga River at Chenango Forks, N. Y., 1903. Cayuta Creek at Waverly, N. Y., 1898-1902. (Data in Water-Supply Paper 109 only.) Chemung River at Chemung, N. Y., 1903— (Data for period prior to 1905 published in Water-Supply Paper 109.) West Branch of Susquehanna River at Williamsport, Pa., 1895-1913. West Branch of Susquehanna River at Allenwood, Pa., 1899-1902. Juniata River at Newport, Pa., 1899-1913. Broad Creek at Mill Green, Md., 1905-1909. Octoraro Creek at Rowlandsville, Md., 1896-1899. Deer Creek near Churchville, Md., 1905-1909. ## GUNPOWDER RIVER BASIN. Gunpowder Falls at Glencoe, Md., 1905-1909. Little Gunpowder Falls near Belair, Md., 1905-1909. #### PATAPSCO RIVER BASIN. Patapsco River at Woodstock, Md., 1896-1909. #### PATUXENT RIVER BASIN. Patuxent River near Burtonsville, Md., 1911–12; 1913–Patuxent River at Laurel, Md., 1896–1898! #### POTOMAC RIVER BASIN. Potomac River, North Branch (head of Potomac River), at Piedmont, W. Va., 1899-1906. Potomac River, North Branch, at Cumberland, Md., 1894-1897. Potomac River at Great Cacapon, W. Va., 1895. Potomac River at Point of Rocks, Md., 1895- Potomac River at Great Falls, Md., 1886-1891. Potomac River at Chain Bridge, near Washington, D. C., 1892-1895. Savage River at Bloomington, Md., 1905-6. Georges Creek at Westernport, Md., 1905-6. Wills Creek near Cumberland, Md., 1905-6. South Branch of Potomac River near Springfield, W. Va., 1894-1896; 1899-1906. Opequan Creek near Martinsburg, W. Va., 1905-6. Tuscarora Creek at Martinsburg, W. Va., 1905. Antietam Creek near Sharpsburg, Md., 1897-1905. North River (head of South Fork of Shenandoah River, which is continuation of main stream) at Port Republic, Va., 1895–1899. South Fork of Shenandoah River near Front Royal, Va., 1899-1906. Shenandoah River at Millville, W. Va., 1895-1909. Cooks Creek at Mount Crawford, Va., 1905-6. Middle River: Lewis Creek near Staunton, Va., 1905-6. South River at Basic City, Va., 1905-6. South River at Port Republic, Va., 1895-1899. Elk Run at Elkton, Va., 1905-6. Hawksbill Creek near Luray, Va., 1905-6. North Fork of Shenandoah River near Riverton, Va., 1899-1906. Passage Creek at Buckton, Va., 1905-6. Monocacy River near Frederick, Md., 1896- Goose Creek near Leesburg, Va., 1909–1912. Rock Creek at Zoological Park, D. C., 1897-1900. Rock Creek at Lyons Mill, D. C., 1892-1894. Occoquan Creek near Occoquan, Va., 1913- #### RAPPAHANNOCK RIVER BASIN. Rappahannock River near Fredericksburg, Va., 1907- ## REPORTS ON WATER RESOURCES OF NORTH ATLANTIC COAST. #### PUBLICATIONS OF UNITED STATES GEOLOGICAL SURVEY. #### WATER-SUPPLY PAPERS. Water-supply papers are distributed free by the Geological Survey as long as its stock lasts. An asterisk (*) indicates that this stock has been exhausted. Many of the papers marked in this way may, however, be purchased (at price noted) from the Superintendent of Documents, Washington, D. C. Omission of the price indicates that the report is not obtainable from Government sources. Water-supply papers are of octavo size. *24. Water resources of the State of New York, Part I, by G. W. Rafter. 1899. 99 pp., 13 pls. 15c. Describes the principal rivers of New York and their more important tributaries, and gives data on temperature, precipitation, evaporation, and stream flow. *25. Water resources of the State of New York, Part II, by G. W. Rafter. 1899. 100 pp., 12 pls. 15c. Contains discussion of water storage projects on Genesee and Hudson rivers, power development at Niagara Falls, descriptions and early history of State canals, and a chapter on the use and value of the water
power of the streams and canals; also brief discussion of the water yield of sand areas of Long Island. *44. Profiles of rivers in the United States, by Henry Gannett. 1901. 100 pp., 11 pls. 15c. Gives elevations and distances along rivers of the United States, also brief descriptions of many of the streams, including St. Croix, Penobscot, Kennebec, Androscoggin, Saco, Merrimack, Connecticut, Housatonic, Hudson, Mohawk, Delaware, Lehigh, Schuylkill, Susquehanna, Juniata, Potomac, and James rivers. - Preliminary list of deep borings in the United States, Part I (Alabama-Montana), by N. H. Darton. 1902. 60 pp. (See No. 149.) 5c. - Preliminary 'list of deep borings in the United States, Part II (Nebraska-Wyoming), by N. H. Darton. 1902. 67 pp. 5c. Nos. 57 and 61 contain information as to depth, diameter, yield, and head of water in borings more than 400 feet deep; under head "Remarks" give information concerning temperature, quality of water, purposes of boring, etc. The lists are arranged by States, and the States are arranged alphabetically. Revised edition published in 1905 as Water-Supply Paper 149 (q.v.). *69. Water powers of the State of Maine, by H. A. Pressey. 1902. 124 pp., 14 pls. 20c. Discusses briefly the geology and forests of Maine and in somewhat greater detail the drainage areas, lake storage, and water powers of the St. Croix, Penobscot, Kennebec, Androscoggin, Presumpscot, Saco, and St. John rivers, and the minor coastal streams; mentions also developed tidal powers. 72. Sewage pollution in the metropolitan area near New York City and its effect on inland water resources, by M. O. Leighton. 1902. 75 pp., 8 pls. 10c. Defines "normal" and "polluted" waters and discusses the water of Raritan, Passaic, and Hudson rivers and their tributaries and the damage resulting from pollution. Observations on the flow of rivers in the vicinity of New York City, by H. A. Pressey. 1903. 108 pp., 13 pls. 15c. Describes methods of measuring stream flow in open channels and under ice, and the quality of the river water as determined by tests of turbidity, color, alkalinity, and permanent hardness. The streams considered are Catskill, Esopus, Rondout, and Fishkill creeks, and Wallkill, Tenmile, and Housatonic rivers. Normal and polluted waters in northeastern United States, by M. O. Leighton. 1903. 192 pp. 10c. Defines essential qualities of water for various uses, the impurities in rain, surface, and underground waters, the meaning and importance of sanitary analyses, and the principal sources of pollution; chiefly "a review of the more readily available records" of examination of water supplies derived from streams in the Merrimack, Connecticut, Housatonic, Delaware, and Ohio River basins; contains many analyses. ¹ For stream-measurement reports see tables on pages v and vi. The Passaic flood of 1902, by G. B. Hollister and M. O. Leighton. 1903. 56 pp., 15 pls. 15c. Describes the topography of the area drained by the Passaic and its principal tributaries; discusses flood flow and losses caused by the floods, and makes comparison with previous floods; suggests construction of dam at Mountain View to control flood flow. See also No. 92. - The Passaic flood of 1903, by M. O. Leighton. 1904. 48 pp., 7 pls. 5c. Discusses flood damages and preventive measures. See No. 88. - 102. Contributions to the hydrology of eastern United States, 1903; M. L. Fuller, geologist in charge. 1904. 522 pp. 30c. Contains brief reports on the wells and springs of the New England States and New York. The reports comprise tabulated well records giving information as to location, owner, depth, yield, head, etc., supplemented by notes as to elevation above sea, material penetrated, temperature, use, and quality; many miscellaneous analyses. 106. Water resources of the Philadelphia district, by Florence Bascom. 1904. 75 pp., 4 pls. 5c. Describes the physiography, stratigraphic geology, rainfall, streams, ponds, springs, deep and artesian wells, and public water supplies of the area mapped on the Germantown, Norristown, Philadelphia, and Chester atlas sheets of the United States Geological Survey; compares quality of Delaware and Schuykill River waters. - 108. Quality of water in the Susquehanna River drainage basin, by M. O. Leighton, with an introductory chapter on physiographic features, by G. B. Hollister. 1904. 76 pp., 4 pls. 15c. - 109. Hydrography of the Susquehanna River drainage basin, by J. C. Hoyt and R. H. Anderson. 1905. 215 pp., 29 pls. 25c. The scope of No. 108 is sufficiently indicated by its title. No. 109 describes the physical features of the area drained by the Susquehanna and its tributaries, contains the results of measurements of flow at the gaging stations, and discusses precipitation, floods, low water, and water power. 110. Contributions to the hydrology of eastern United States, 1904; M. L. Fuller, geologist in charge. 1905. 211 pp., 5 pls. 10c. Contains brief reports on water resources, surface and underground, of districts in the North Atlantic slope drainage basins, as shown by the following list: Drilled wells of the Triassic area of the Connecticut Valley, by W. H. C. Pynchon. Triassic rocks of the Connecticut Valley as a source of water supply, by M. L. Fuller. Scope indicated by title. Water resources of the Taconic quadrangle, New York, Massachusetts, and Vermont, by F. B. Taylor. Discusses rainfall, drainage, water powers, lakes and ponds, underground waters, and mineral springs; also quality of spring water as indicated by chemical and sanitary analyses of Sand Spring, near Williamstown. Water resources of the Watkins Glen quadrangle, New York, by Ralph S. Tarr. Discusses the use of the surface and underground waters for municipal supplies and their quality as indicated by examination of Sixmile and Fall creeks, and sanitary analyses of well water at Ithaca. Water resources of the central and southwestern highlands of New Jersey, by Laurence La Forge. Treats of population, industries, climate, and soils, lakes, ponds, swamps and rivers, mineral springs (with analyses), water power, and the Morris Canal; present and prospective sources and quality of municipal supplies. Water resources of the Chambersburg and Mercersburg quadrangles, Pennsylvania, by George W. Stose. Describes streams and springs. Water resources of the Curwensville, Patton, Ebensburg, and Barnesboro quadrangles, Pennsylvania, by F. G. Clapp. Treats briefly of surface and underground waters and their use for municipal supplies; gives analyses of waters at Cresson Springs. Water resources of the Accident and Grantsville quadrangles, Maryland, by G. C. Martin. Water resources of the Frostburg and Flintstone quadrangles, Maryland and West Virginia, by G. C. Martin. Underground waters of eastern United States; M. L. Fuller, geologist in charge. 1905. 285 pp., 18 pls. 25c. Contains brief reports on water supplies of the North Atlantic States as follows: Maine, by W. S. Bayley. New Hampshire, by M. L. Fuller. Vermont, by G. H. Perkins. Massachusetts and Rhode Island, by W. O. Crosby. Connecticut, by H. E. Gregory. New York, by F. B. Weeks. New Jersey, by G. N. Knapp. Pennsylvania, by M. L. Fuller. Delaware, by N. H. Darton. Maryland, by N. H. Darton and M. L. Fuller. District of Columbia, by N. H. Darton and M. L. Fuller. Virginia, by N. H. Darton and M. L. Fuller. Each of these reports discusses the resources of the public and private water supplies and related subjects, and gives list of pertinent publications; mineral springs are listed and sales of mineral water are reported. 140. Field measurements of the rate of movement of underground waters, by C. S. Slichter. 1905. 122 pp., 15 pls. 15c. Contains chapter on measurement of rate of underflow on Long Island, N. Y. 144: The normal distribution of chlorine in the natural waters of New York and New England, by D. D. Jackson. 1905. 31 pp., 5 pls. 10c. Discusses common salt in coast and inland waters, salt as an index to pollution of streams and wells, the solutions and methods used in chlorine determinations, and the use of the normal chlorine map; gives charts and tables for chlorine in the New England States and New York. 145. Contributions to the hydrology of eastern United States, 1905; M. L. Fuller, geologist in charge. 1905. 220 pp., 6 pls. 10c. Contains several brief reports relating chiefly to areas in the North Atlantic coast drainage basins, as follows: Water resources of the Portsmouth-York region, New Hampshire and Maine, by George Otis Smith. Gives results of investigations made for the War Department to determine water supplies available for forts at mouth of harbor. Water supply from glacial gravels near Augusta, Maine, by George Otis Smith. Describes the Silver Lake system of ponds near Augusta and the series of springs at the head of Spring Brook. Water resources of the Pawpaw and Hancock quadrangles, West Virginia, Maryland, and Pennsylvania, by George W. Stose and George C. Martin. Describes rocks, springs, and streams in the area at the northernmost bend of the Potomac; discusses history of development, character of water (with analysis), flow, and origin of Berkeley Springs. Water of a gravel-filled valley near Tully, N. Y., by George B. Hollister. Describes character of the sands and gravels, the volume of the springs issuing from them, deposits of tufa, the waters of the lakes, and the composition of the spring and lake waters; analyses. 147. Destructive floods in United States in 1904, by E. C. Murphy and others. 206 pp., 18 pls. 15c. Describes floods on Susquehanna and Mohawk rivers and near Johnstown, Pa. 149. Preliminary list of deep borings in the United States, second edition, with additions, by N. H. Darton. 1905. 175 pp. 10c. Gives by States (and within the States by counties), location, depth, diameter, yield, height of water, and other available information, concerning wells 400 feet or more in depth; includes all wells listed in Water-Supply Papers 57 and 61;
mentions also principal publications relating to deep borings. 155. Fluctuations of the water level in wells, with special reference to Long Island, New York, by A. C. Veatch. 1906. 83 pp., 9 pls. 25c. Includes general discussion of fluctuation due to rainfall and evaporation, barometric changes, temperature changes, changes in rivers, changes in lake level, tidal changes, effects of settlement, irrigation, dams, underground water developments, and to indeterminate causes. *162. Destructive floods in the United States in 1905, with a discussion of flood discharge and frequency and an index to flood literature, by E. C. Murphy and others. 1906. 105 pp., 4 pls. 15c. Contains accounts of floods in North Atlantic slope drainage basins as follows: Flood on Poquonnock River, Connecticut, by T. W. Norcross; flood on the Unadilla and Chenango rivers, New York, by R. E. Horton and C. C. Covert; also estimates of flood discharge and frequency on Kennebec, Androscoggin, Merrimack, Connecticut, Hudson, Passaic, Raritan, Delaware, Susquehanna, and Potomac rivers; gives index to literature on floods on American streams. *185. Investigations on the purification of Boston sewage, with a history of the sewagedisposal problem, by C.-E. A. Winslow and E. B. Phelps. 1906. 163 pp. 25c. Discusses composition, disposal, purification, and treatment of sewages and recent tendencies in sewage-disposal practice in England, Germany, and the United States; describes character of crude sewage at Boston, removal of suspended matter, treatment in septic tanks, and purification in intermittent sand filtration and coarse material; gives bibliography. - *192. The Potomac River basin (Geographic history; Rainfall and stream flow; Pollution, typhoid fever, and character of water; Relation of soils and forest cover to quality and quantity of surface water; Effect of industrial wastes on fishes), by H. N. Parker, Bailey Willis, R. H. Bolster, W. W. Ashe, and M. C. Marsh. 1907. 364 pp., 10 pls. 60c. Scope indicated by title. - *198. Water resources of the Kennebec River basin, Maine, by H. K. Barrows, with a section on the quality of Kennebec River water, by G. C. Whipple. 1907. 235 pp. 7 pls. 30c. Describes physical characteristics and geology of the basin, the flow of the streams, evaporation, floods, developed and undeveloped water powers, water storage, log driving, and lumbering; under quality of water discusses effect of tides, pollution, and the epidemic of typhoid fever in 1902–3; contains gazetteer of rivers, lakes, and ponds. *223. Underground waters of southern Maine, by F. G. Clapp, with records of deep wells, by W. S. Bayley. 1909. 268 pp., 24 pls. 55c. Describes physiography, rivers, water-bearing rocks, amount, source, and temperature of the ground waters, recovery of waters by springs, collecting galleries and tunnels, and wells; discusses well-drilling methods, municipal water supplies, and the chemical composition of the ground waters; gives details for each county. 232. Underground-water resources of Connecticut, by H. E. Gregory, with a study of the occurrence of water in crystalline rocks, by E. E. Ellis. 1909. 200 pp. 5 pls. 20c. Describes physiographic features, drainage, forests, climate, population and industries, and rocks; circulation, amount, temperature, and contamination of ground water; discusses the ground waters of the crystalline rocks, the Triassic sandstones and traps, and the glacial drift; the quality of the ground waters (with analyses); well construction; temperature, volume, character, uses, and production of spring waters. 236. The quality of surface waters in the United States, Part I, Analyses of waters east of the one hundredth meridian, by R. B. Dole. 1909. 123 pp. 10c. Describes collection of samples, method of examination, preparation of solutions, accuracy of estimates, and expression of analytical results; gives results of analyses of waters of Androscoggin, Hudson, Raritan, Delaware, Susquehanna, Lehigh, Potomac, and Shenandoah rivers. *258. Underground-water papers, 1910, by M. L. Fuller, F. G. Clapp, G. C. Matson, Samuel Sanford, and H. C. Wolff. 1911. 123 pp., 2 pls. 15c. Contains four brief reports pertaining especially to districts in the North Atlantic coast drainage area: Occurrence and composition of well waters in the slates of Maine, by F. G. Clapp. Analyses. Occurrence and composition of well waters in the granites of New England, by F. G. Clapp. Discusses proportion of successful wells and water supply and depth. Analyses. Composition of mineral springs in Maine, by F. G. Clapp. Saline artesian waters of the Atlantic Coastal Plain, by Samuel Sanford. Underground waters near Manassas, Va., by F. G. Clapp. 279. Water resources of the Penobscot River basin, Maine, by H. K. Barrows and C. C. Babb. 1912. 285 pp., 19 pls. 65c. Describes the topography, drainage, geology, forests, population, industries, transportation lines, and precipitation in the basin; gives results of investigations of stream flow at gaging stations; discusses relation of run-off to precipitation, evaporation, floods, low water, developed and undeveloped water powers, storage, log driving, and lumbering; contains gazetteer of rivers, lakes, and ponds. 374. Ground water in the Hartford, Stamford, Salisbury, Willimantic, and Saybrook areas, Connecticut, by H. E. Gregory and A. J. Ellis. 1916. 150 pp., 13 pls. 30c. Describes occurrence of ground water, methods of developing, and requirements for municipal use. Gives, by towns, a description of the surface and ground water and of the public water supply, and records of wells and springs. 397. Ground water in the Waterbury area, Connecticut, by A. J. Ellis, under direction of H. E. Gregory. 1916. 73 pp., 4 pls. 15c. Describes the geology of the area, the occurrence of ground water, its use for private and municipal supply, and methods of developing. Discusses under towns the population and industries, topography, water-bearing formations, surface and ground water, and public supplies, and gives records of wells and springs. 415. Surface waters of Massachusetts, by C. H. Pierce and H. J. Dean. 1916. 433 pp., 12 pls. 45c. A compilation of available stream-flow data, including the classic records collected on the Merrimack at Lowell and Lawrence, on the Connecticut at Holyoke, and on the Cochituate at Sudbury, by the Metropolitan Water and Sewerage Board, as well as records covering shorter periods; prepared in cooperation with the Commonwealth of Massachusetts. Contains a gazetteer of streams, lakes, and ponds. 424. Surface waters of Vermont, by C. H. Pierce. In press April, 1917. A compilation of available stream-flow data; prepared in cooperation with the Commonwealth of Vermont. #### ANNUAL REPORTS. Each of the papers contained in the annual reports was also issued in separate form. Annual reports are distributed free by the Geological Survey as long as its stock lasts. An asterisk (*) indicates that this stock has been exhausted. Many of the papers so marked, however, may be purchased from the Superintendent of Documents, Washington, D. C. - *Sixth Annual Report of the United States Geological Survey, 1884-85, J. W. Powell, Director. 1885. xxix, 570 pp., 65 pls. Cloth \$2.00. Contains: - * Sea-coast swamps of the eastern United States, by N. S. Shaler. pp. 353-398. Describes the coast swamps of New England; discusses economic problems connected with marine swamps; gives a detailed account of selected areas of salt marsh lands, and a list of the principal areas of salt marshes between the Hudson River and Portland, Maine. - *Tenth Annual Report of the United States Geological Survey, 1888–89, J. W. Powell, Director. 1890. 2 parts. Pt. I—Geology, xv, 774 pp., 98 pls. Cloth \$2.35. Contains: - * General account of the fresh-water morasses of the United States, with a description of the Dismal Swamp district of Virginia and North Carolina, by N. S. Shaler, pp. 255-339, Pls. 6 to 19. Scope indicated by title. - Fourteenth Annual Report of the United States Geological Survey, 1892-93, J. W. Powell, Director. 1893. (Pt. II, 1894.) 2 parts. *Pt. II.—Accompanying papers, xx, 597 pp., 73 pls. Cloth \$2.10. Contains: *The potable waters of the eastern United States, by W J McGee, pp. 1 to 47. Discusses cistern water, stream waters, and ground waters, including mineral springs and artesian wells. #### PROFESSIONAL PAPERS. - Professional papers are distributed free by the Geological Survey as long as its stock lasts. An asterisk (*) indicates that this stock has been exhausted. Many of the papers marked with an asterisk may, however, be purchased from the Superintendent of Documents, Washington, D. C. Professional papers are of quarto size. - *44. Underground-water resources of Long Island, N. Y., by A. C. Veatch, C. S. Slichter, Isaiah Bowman, W. O. Crosby, and R. E. Horton. 1906. 394 pp., 34 pls. \$1.25. Describes the geologic formations, the source of the ground waters, and requisite conditions for flowing wells; the springs, streams, ponds, and lakes; artesian and deep wells; fluctuation of ground-water table; blowing wells; waterworks; discusses measurements of velocity of underflow, the results of sizing and filtration tests, and the utilization of stream waters; gives well records and notes (with chemical analyses) concerning representative wells. ## BULLETINS. An asterisk (*) indicates that the Geological Survey's stock of the paper is exhausted. Many of the papers so marked may be purchased from the Superintendent of Documents, Washington, D. C. *138. Artesian well prospects in the Atlantic Coastal Plain region, by N. H. Darton. 1896. 232 pp., 19 pls. Describes the general geologic structure of the Atlantic Coastal Plain region and summarizes the conditions affecting subterranean water in the Coastal Plain; discusses the general geologic relations in New York, southern New Jersey, Delaware, Maryland, District of Columbia, Virginia, North Carolina, South Carolina, and eastern
Georgia; gives for each of the States a list of the deep wells and discusses well prospects. The notes on the wells that follow the tabulated lists contain many well sections and analyses of the waters. 264. Record of deep well drilling for 1904, by M. L. Fuller, E. F. Lines, and A. C. Veatch. 1905. 106 pp. 10c. Discusses the importance of accurate well records to the driller, to owners of oil, gas, and water wells, and to the geologist; describes the general methods of work; gives tabulated records of wells in Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Virginia, and detailed records of wells at Pleasantville and Atlantic Highlands, N. J., and Tully, N. Y. These wells were selected because they give definite stratigraphic information. 298. Record of deep-well drilling for 1905, by M. L. Fuller and Samuel Sanford. 1906. 299 pp. 25c. Gives an account of progress in the collection of well records and samples; contains tabulated records of wells in Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Virginia, and detailed records of wells in Newcastle County, Del.; Cumberland County, Maine; Anne Arundel, St. Mary, and Talbot counties, Md.; Hampshire County, Mass.; Monmouth County, N. J.; Saratoga County, N. Y.; and Lycoming and Somerset counties, Pa. The wells of which detailed sections are given were selected because they afford valuable stratigraphic information. #### GEOLOGIC FOLIOS. Under the plan adopted for the preparation of a geologic map of the United States the entire area is divided into small quadrangles, bounded by certain meridians and parallels, and these quadrangles, which number several thousand, are separately surveyed and mapped. The unit of survey is also the unit of publication, and the maps and description of each quadrangle are issued in the form of a folio. When all the folios are completed they will constitute the Geologic Atlas of the United States. A folio is designated by the name of the principal town or of a prominent natural feature within the quadrangle. Each folio includes maps showing the topography, geology, underground structure, and mineral deposits of the area mapped and several pages of descriptive text. The text explains the maps and describes the topographic and geologic features of the country and its mineral products. The topographic map shows roads, railroads, waterways, and, by contour lines, the shapes of the hills and valleys and the height above sea level of all points in the quadrangle. The areal-geology map shows the distribution of the various rocks at the surface. The structural-geology map shows the relations of the rocks to one another underground. The economic-geology map indicates the location of mineral deposits that are commercially valuable. The artesian-water maps show the depth to underground-water horizons. Economic-geology and artesian-water maps are included in folios if the conditions in the areas mapped warrant their publication. The folios are of special interest to students of geography and geology and are valuable as guides in the development and utilization of mineral resources. Folios 1 to 163, inclusive, are published in only one form (18 by 22 inches), called the library edition. Some of the folios that bear numbers higher than 163 are published also in an octave edition (6 by 9 inches). Owing to a fire in the Geological Survey building May 18, 1913, the stock of geologic felios was more or less damaged by fire and water, but 80 or 90 per cent of the folios are usable. They will be sold at the uniform price of 5 cents each, with no reduction for wholesale orders. This rate applies to folios in stock from 1 to 184, inclusive (except reprints), also to the library edition of folio 186. The library edition of folios 185, 187, and higher numbers sells for 25 cents a copy, except that some folios which contain an unusually large amount of matter sell at higher prices. The octave edition of folio 185 and higher numbers sells for 50 cents a copy, except folio 193, which sells for 75 cents a copy. A discount of 40 per cent is allowed on an order for folios or for folios together with topographic maps amounting to \$5 or more at the retail rate. All the folios contain descriptions of the drainage of the quadrangles. The folios in the following list contain also brief discussions of the underground waters in con- ¹ Index maps showing areas in the North Atlantic slope basins covered by topographic maps and by geologic folios will be mailed on receipt of request addressed to the Director, U. S. Geological Survey, Washington, D. C. nection with the economic resources of the areas and more or less information concerning the utilization of the water resources. An asterisk (*) indicates that the stock of the folio is exhausted. - *13. Fredericksburg, Virginia-Maryland, 1894. 5c. - 23. Nomini, Maryland-Virginia, 1896. 5c. - *70. Washington, District of Columbia-Maryland-Virginia, 1901. - *83. New York City (Paterson, Harlem, Staten Island, and Brooklyn quadrangles), New York-New Jersey, 1902. Discusses the present and future water supply of New York City. - 136. St. Marys, Maryland-Virginia, 1906. 5c. Discusses artesian wells. - 137. Dover, Delaware-Maryland-New Jersey, 1906. 5c. Describes the shallow and deep wells used as sources of water supply; gives section of well at Middletown, Del. 149. Penobscot Bay, Maine, 1907. 5c. Describes the wells and springs; gives analysis of spring water from North Bluehill. - 152. Patuxent, Maryland-District of Columbia, 1907. 5c. Discusses the springs, shallow wells, and artesian wells. - *157. Passaic, New Jersey-New York, 1908. Discusses the underground water of the quadrangle, including the cities of Newark, Hoboken, Jersey City, Paterson, Elizabeth, Passaic, Plainfield, Rahway, and Perth Amboy, and a portion of the city of New York; gives a list of the deep borings in the New Jersey portion of the quadrangle, and notes concerning wells on Staten Island, Long Island, Hoffman Island, and Governors Island. 158. Rockland, Maine, 1908. 5c. Describes the water supply in Knox County, Maine, of which Rockland is the principal city; discusses the water obtained from wells drilled in limestone and granite, and the city water supply of Camden, Rockport, Rockland, and Thomaston. 160. Accident-Grantsville, Maryland-Pennsylvania-West Virginia, 1908. 5c. Under "Mineral Resources" the folio describes Youghiogheny and Castleman rivers, Savage River, and Georges Creek, and the spring waters; notes possibility of obtaining artesian 'water. *161. Franklin Furnace, New Jersey, 1908. Describes the streams, water powers, and ground waters of a district in northwestern New Jersey, mainly in Sussex County but including also a small part of Morris County; gives tabulated list of water powers and of bored wells. *162. Philadelphia (Norristown, Germantown, Chester, and Philadelphia quadrangles), Pennsylvania-New Jersey-Delaware, 1909. Describes the underground waters of the Piedmont Plateau and the Coastal Plain, and gives a tabulated list of wells; discusses the water supply of Philadelphia and Camden, also suburban towns; gives analysis of filtered water of Pickering Creek. 167. Trenton, New Jersey-Pennsylvania, 1909. 5c. Describes streams tributary to Raritan and Delaware rivers (including estimates of capacity with and without storage) and the springs and wells; discusses also the public water supply of Trenton and suburban towns. 169. Watkins Glen-Catatonk, New York, 1909. 5c. Describes the rivers, which include tributaries of the Susquehanna and the St. Lawrence, the lakes and swamps, and, under "Economic geology," springs and shallow and deep wells; discusses also water supply at Ithaca. 170. Mercersburg-Chambersburg, Pennsylvania, 1909. 5c. Describes the underground waters, including limestone springs, sandstone springs, and wells, and mentions briefly the sources of the water supplies of the principal towns. 182. Choptank, Maryland, 1912.² 5c., The Choptank quadrangle includes the entire width of Chesapeake Bay and portions of many large estuaries. ¹ Octavo edition only. ² Issued in two editions—library (18 by 22 inches) and octavo (6 by 9 inches). Specify edition desired. - 189. Barnesboro-Patton, Pennsylvania, 1913. 25c. Discusses the water supply of various towns in the quadrangle. - 191. Raritan, New Jersey, 1914. Discusses briefly the surface and ground waters of the quadrangle, the quality, and the utilization of streams for power; gives analysis of water from Raritan River and from Schooley Mountain Spring near Hackettstown. 192. Eastport, Maine, 1914. 25c. Includes brief account of the water supply of the quadrangle and of the utilization of streams for power. #### MISCELLANEOUS REPORTS. Other Federal bureaus and State and other organizations have, from time to time, published reports relating to the water resources of various sections of the country. Notable among those pertaining to the North Atlantic States are the reports of the Maine State Water Storage Commission (Augusta), the New Hampshire Forestry Commission (Concord), the Metropolitan Water and Sewerage Board (Boston, Mass.), the New York State Water-Supply Commission (Albany), the New York State Conservation Commission (Albany), the New York State engineer and surveyor (Albany), the various commissions on water supply of New York City, the Geological Survey of New Jersey (Trenton), State boards of health, and the Tenth Census (vol. 16). The following reports deserve special mention: Water power of Maine, by Walter Wells, Augusta, 1869. Hydrology of the State of New York, by G. W. Rafter: New York State Museum Bull. 85, 1905. Hydrography of Virginia, by N. C. Grover and R. H. Bolster: Virginia Geol. Survey Bull. 3, 1906. Underground-water resources of the Coastal Plain province of Virginia, by Samuel Sanford: Virginia Geol.
Survey Bull. 5, 1913. Surface water supply of Virginia, by G. C. Stevens: Virginia Geol. Survey Bull. 10, 1916. Many of these reports can be obtained by applying to the several commissions, and most of them can be consulted in the public libraries of the larger cities. # GEOLOGICAL SURVEY HYDROLOGIC REPORTS OF GENERAL INTEREST. The following list comprises reports not readily classifiable by drainage basins and covering a wide range of hydrologic investigations: ### WATER-SUPPLY PAPERS. *1. Pumping water for irrigation, by H. M. Wilson. 1896. 57 pp., 9 pls. Describes pumps and motive powers, windmills, water wheels, and various kinds of engines; also storage reservoirs to retain pumped water until needed for irrigation. ¹ Issued in two editions—library (18 by 22 inches), 25c., and octave (6 by 9 inches), 50c. Specify edition desired. - *3. Sewage irrigation, by G. W. Rafter: 1897. 100 pp., 4 pls. 10c. (See Water-Supply Paper 22.) - Discusses methods of sewage disposal by intermittent filtration and by irrigation; describes utilization of sewage in Germany, England, and France, and sewage purification in the United States. - *8. Windmills for irrigation, by E. C. Murphy. 1897. 49 pp., 8 pls. 10c. Gives results of experimental tests of windmills during the summer of 1896 in the vicinity of Garden, Kans.; describes instruments and methods and draws conclusions. - *14. New tests of certain pumps and water lifts used in irrigation, by O. P. Hood. 1898. 91 pp., 1 pl. 10c. Discusses efficiency of pumps and water lifts of various types. - *20. Experiments with windmills, by T. O. Perry. 1899. 97 pp., 12 pls. 15c. Includes tables and descriptions of wind wheels, makes comparisons of wheels of several types, and discusses results. - *22. Sewage irrigation, Part II, by G. W. Rafter. 1899. 100 pp., 7 pls. 15c. Gives résumé of Water-Supply Paper No. 3; discusses pollution of certain streams, experiments on purification of factory wastes in Massachusetts, value of commercial fertilizers, and describes American sewage-disposal plants by States; contains bibliography of publications relating to sewage utilization and disposal. - Water resources of Puerto Rico, by H. M. Wilson. 1899. 48 pp., 17 pls. 15c. Describes briefly topography, climate, rivers, irrigation methods, soils, forestation, water power, and transportation facilities. - *41. The windmill: Its efficiency and economic use, Part I, by E. C. Murphy. 1901, 72 pp., 14 pls. - *42. The windmill: Its efficiency and economic use, Part II, by E. C. Murphy. 1901. 75 pp., 2 pls. 10c. Nos. 41 and 42 give details of results of experimental tests with windmills of various types. - Nos. 41 and 42 give details of results of experimental tests with windmills of various types. - *43. Conveyance of water in irrigation canals, flumes, and pipes, by Samuel Fortier. 1901. 86 pp., 15 pls. 15c. - *44. Profiles of rivers in the United States, by Henry Gannett. 1901. 100 pp., 11 pls. 15c. - Gives elevations and distances along rivers of the United States, also briefdescriptions of many of the streams. Arrangement geographic. Many river profiles are scattered through other reports on surface waters in various parts of the United States. - *56. Methods of stream measurement. 1901. 51 pp., 12 pls. 15c. Describes the methods used by the Survey in 1901-2. See also Nos. 64, 94, and 95. - 64. Accuracy of stream measurements, by E. C. Murphy. 1902. 99 pp., 4 pls. (See No. 95.) 10c. - Describes methods of measuring velocity of water and of measuring and computing stream flow and compares results obtained with the different instruments and methods; describes also experiments and results at the Cornell University hydraulic laboratory. A second, enlarged edition published as Water-Supply Paper 95. - *67. The motions of underground waters, by C. S. Slichter. 1902. 106 pp., 8 pls. 15c. - Discusses origin, depth, and amount of underground waters; permeability of rocks and porosity of soils; causes, rates, and laws of motions of underground water; surface and deep zones of flow, and recovery of waters by open wells and artesian and deep wells; treats of the shape and position of the water table; gives simple methods of measuring yield of flowing well; describes artesian wells at Savannah, Ga. - 72. Sewage pollution in the metropolitan area near New York City and its effect on inland water resources, by M. O. Leighton. 1902. 75 pp., 8 pls. 10c. Defines "normal" and "polluted" waters and discusses the damage resulting from pollution. - The water resources of Molokai, Hawaiian Islands, by Waldemar Lindgren. 1903. 62 pp., 4 pls. 10c. - Describes briefly the topography, geology, coral reefs, climate, soils, vegetation, forests, fauna of the island, the springs, running streams, and wells, and discusses the utilization of the surface and underground waters. *80. The relation of rainfall to run-off, by G. W. Rafter. 1903. 104 pp. 10c. Treats of measurements of rainfall and laws and measurements of stream flow; gives rainfall. run-off, and evaporation formulas; discusses effect of forests on rainfall and run-off. 87. Irrigation in India (second edition), by H. M. Wilson. 1903. 238 pp., 27 pls. First edition was published in Part II of the Twelfth Annual Report. *94. Hydrographic manual of the United States Geological Survey, prepared by E. C. Murphy, J. C. Hoyt, and G. B. Hollister. 1904. 76 pp., 3 pls. 10c. Gives instruction for field and office work relating to measurements of stream flow by current meters. See also No. 95. *95. Accuracy of stream measurements (second, enlarged edition), by E. C. Murphy. 1904. 169 pp., 6 pls. Describes methods of measuring and computing stream flow and compares results derived from different instruments and methods. See also No. 94. 103. A review of the laws forbidding pollution of inland waters in the United States, by E. B. Goodell. 1904. 120 pp. (See No. 152.) Explains the legal principles under which antipollution statutes become operative, quotes court decisions to show authority for various deductions, and classifies according to scope the statutes enacted in the different States. 110. Contributions to the hydrology of eastern United States, 1904; M. L. Fuller, geologist in charge. 1905. 211 pp., 5 pls. 10c. Contains the following reports of general interest. The scope of each paper is indicated by its Description of underflow meter used in measuring the velocity and direction of underground water, by Charles S. Slichter. The California or "stovepipe" method of well construction, by Charles S. Slichter. Approximate methods of measuring the yield of flowing wells, by Charles S. Slichter. Corrections necessary in accurate determinations of flow from vertical well casings, from notes furnished by A. N. Talbot. Experiments relating to problems of well contamination at Quitman, Ga., by S. W. McCallie. Notes on the hydrology of Cuba, by M. L. Fuller. 113. The disposal of strawboard and oil-well wastes, by R. L. Sackett and Isaiah 1905. 52 pp., 4 pls. 5c. The first paper discusses the pollution of streams by sewage and by trade wastes, describes the manufacture of strawboard and gives results of various experiments in disposing of the waste, The second paper describes briefly the topography, drainage, and geology of the region about Marion, Ind., and the contamination of rock wells and of streams by waste oil and brine. 114. Underground waters of eastern United States; M. L. Fuller, geologist in charge. 1905. 285 pp., 18 pls. 25c. Contains report on "Occurrence of underground waters," by M. L. Fuller, discussing sources, amount, and temperature of waters, permeability and storage capacity of rocks, water-bearing formations, recovery of water by springs, wells, and pumps, essential condition of artesian flows, and general conditions affecting underground waters in eastern United States. 115. River surveys and profiles made during 1903, arranged by W. C. Hall and J. C. Hoyt. 1905., 115 pp., 4 pl. 10c. Contains results of surveys made to determine location of undeveloped power sites. - 119. Index to the hydrographic progress reports of the United States Geological Survey, 1888 to 1903, by J. C. Hoyt and B. D. Wood. 1905. 253 pp. Scope indicated by title. - 120. Bibliographic review and index of papers relating to underground waters published by the United States Geological Survey, 1879-1904, by M. L. Fuller. 1905. 128 pp. 10c. Scope indicated by title. - 122. Relation of the law to underground waters, by D. W. Johnson. 1905. Defines and classifies underground waters, gives common-law rules relating to their use, and cites State legislative acts affecting them. 140. Field measurements of the rate of movement of underground waters, by C. S. Slichter. 1905. 122 pp., 15 pls. 15c. Discusses the capacity of sand to transmit water, describes measurements of underflow in Rio Hondo, San Gabriel, and Mohave River valleys, Cal., and on Long Island, N. Y.; gives results of tests of wells and pumping plants, and describes stovepipe method of well construction. 143. Experiments on steel-concrete pipes on a working scale, by J. H. Quinton. 1905. 61 pp., 4 pls. Scope indicated by title. Contributions to the hydrology of eastern United States, 1905; M. L. Fuller, geologist in charge. 1905. 220 pp., 6 pls. 10c. Contains brief reports of general interest as follows: Drainage of ponds into drilled wells, by Robert E. Horton. Discusses efficiency, cost, and capacity of drainage wells, and gives statistics of such wells in southern Michigan. Construction of so-called fountain and geyser springs, by Myron L. Fuller. A convenient gage for determining low artesian heads, by Myron L. Fuller. 146. Proceedings of second conference of engineers of the Reclamation Service, with accompanying papers, compiled by F. H. Newell, chief engineer. 1905. 267 pp. 15c. Contains brief account of the organization of the hydrographic [water-resources] branch and the Reclamation Service, reports of conferences and
committees, circulars of instruction, and many brief reports on subjects closely related to reclamation, and a bibliography of technical papers by members of the service. Of the papers read at the conference those listed below (scope indicated by title) are of more or less general interest: Proposed State code of water laws, by Morris Bien. Power engineering applied to irrigation problems, by O. H. Ensign. Estimates on tunneling in irrigation projects, by A. L. Fellows. Collection of stream-gaging data, by N. C. Grover. Diamond-drill methods, by G. A. Hammond. Mean-velocity and area curves, by F. W. Hanna. Importance of general hydrographic data concerning basins of streams gaged, by R. E. Horton. Effect of aquatic vegetation on stream flow, by R. E. Horton. Sanitary regulations governing construction camps, by M. O. Leighton. Necessity of draining irrigated land, by Thos. H. Means. Alkali soils, by Thos. H. Means. Cost of stream-gaging work, by E. C. Murphy. Equipment of a cable gaging station, by E. C. Murphy. Silting of reservoirs, by W. M. Reed. Farm-unit classification, by D. W. Ross. Cost of power for pumping irrigating water, by H. A. Storrs. Records of flow at current-meter gaging stations during the frozen season, by F. H. Tillinghast. Destructive floods in United States in 1904, by E. C. Murphy and others. 206 pp., 18 pls. 15c. Contains a brief account of "A method of computing cross-section area of waterways," including formulas for maximum discharge and area of cross section. - 150. Weir experiments, coefficients, and formulas, by R. E. Horton. 1906. 189 pp., 38 pls. (See Water-Supply Paper 200.) 15c. Scope indicated by title. - 151. Field assay of water, by M. O. Leighton. 1905. 77 pp., 4 pls. 10c. Discusses methods, instruments, and reagents used in determining turbidity, color, fron chlorides, and hardness in connection with the studies of the quality of water in various parts of the United States. - 152. A review of the laws forbidding pollution of inland waters in the United States (second edition), by E. B. Goodell. 1905. 149 pp. 10c. Scope indicated by title. - *155. Fluctuations of the water level in wells, with special reference to Long Island, N. Y., by A. C. Veatch. 1906. 83 pp., 9 pls. 25c. Includes general discussion of fluctuation due to rainfall and evaporation, barometric changes, Includes general discussion of fluctuation due to rainfall and evaporation, barometric changes, temperature changes, changes in rivers, changes in lake level, tidal changes, effects of settlement, irrigation, dams, underground-water developments, and to indeterminate causes. *160. Underground-water papers, 1906; M. L. Fuller, geologist in charge. 1906. 104 pp., 1 pl. Gives account of work in 1905, lists of publications relating to underground waters, and contains the following brief reports of general interest: Significance of the term "artesian," by Myron L. Fuller. Representation of wells and springs on maps, by Myron L. Fuller. Total amount of free water in the earth's crust, by Myron L. Fuller. Use of fluorescein in the study of underground waters, by R. B. Dole. Problems of water contamination, by Isaiah Bowman. of wastes without pollution. Scope indicated by title. Instances of improvement of water in wells, by Myron L. Fuller. - *162. Destructive floods in the United States in 1905, with a discussion of flood discharge and frequency and an index to flood literature, by E. C. Murphy and others. 1906. 105 pp., 4 pls. 15c. - 163. Bibliographic review and index of underground-water literature published in the United States in 1905, by M. L. Fuller, F. G. Clapp, and B. L. Johnson. 1906. 130 pp. 15c. Scope indicated by title. - *179. Prevention of stream pollution by distillery refuse, based on investigations at Lynchburg, Ohio, by Herman Stabler. 1906. 34 pp., 1 pl. 10c. Describes grain distillation, treatment of slop, sources, character, and effects of effinents on streams; discusses filtration, precipitation, fermentation, and evaporation methods of disposal - *180. Turbine water-wheel tests and power tables, by R. E. Horton. 1906. 134 pp., 2 pls. 20c. Scope indicated by title. - *185. Investigations on the purification of Boston sewage, with a history of the sewage-disposal problem, by C.-E. A. Winslow and E. B. Phelps. 1906. 163 pp. 25c. Discusses composition, disposal, purification, and treatment of sewages and recent tendencies in sewage-disposal practice in England, Germany, and the United States; describes character of crude sewage at Boston, removal of suspended matter, treatment in septic tanks, and purification by intermittent sand filtration and coarse material; gives bibliography. *186. Stream pollution by acid-iron wastes, a report based on investigations made at Shelby, Ohio, by Herman Stabler. 1906. 36 pp., 1 pl. Gives history of pollution by acid-iron wastes at Shelby, Ohio, and resulting litigation; discusses effect of acid-iron liquors on sewage purification processes, recovery of copperas from acid-iron wastes, and other processes for disposal of pickling liquor. - *187. Determination of stream flow during the frozen season, by H. K. Barrows and R. E. Horton. 1907. 93 pp., 1 pl. 15c. Scope indicated by title. - *189. The prevention of stream pollution by strawboard waste, by E. B. Phelps. 1906. 29 pp., 2 pls. 5c. Describes manufacture of strawboard, present and proposed methods of disposal of waste Describes manufacture of strawboard, present and proposed methods of disposal of waste liquors, laboratory investigations of precipitation and sedimentation, and field studies of amounts and character of water used, raw material and finished product, and mechanical filtration. - *194. Pollution of Illinois and Mississippi rivers by Chicago sewage (a digest of the testimony taken in the case of the State of Missouri v. the State of Illinois and the Sanitary district of Chicago), by M. O. Leighton. 1907. 369 pp., 2 pls. 40c. Scope indicated by amplification of title. - *196. Water supply of Nome region, Seward Peninsula, Alaska, 1906, by J. C. Hoyt and F. F. Henshaw. 1907. 52 pp., 6 pls. 15c. Gives results of measurements of flow of Alaskan streams; discusses available water supply for - ditch and pipe lines and power development; presents notes for investors. *200. Weir experiments, coefficients, and formulas (revision of paper No. 150), by R. E. Horton, 1907, 195 pp., 38 pls. 35c, - *218. Water-supply investigations in Alaska, 1906–7 (Nome and Kougarok regions, Seward Peninsula; Fairbanks district, Yukon-Tanana region), by F. F. Henshaw and C. C. Covert. 1908. 156 pp., 12 pls. 25c. - Describes the drainage basins, gives results of observations at the gaging stations, and discusses the water supply of the ditch and pipe lines, and possibilities of development; gives also meteorological records. - *226. The pollution of streams by sulphite pulp waste, a study of possible remedies, by E. B. Phelps. 1909. 37 pp., 1 pl. 10c. Describes manufacture of sulphite pulp, the waste liquors, and the experimental work leading to suggestions as to methods of preventing stream pollution. 228. Water-supply investigations of the Yukon-Tanana region, Alaska, 1907 and 1908, Fairbanks, Circle, and Rampart districts, by C. C. Covert and C. E. Ellsworth. 1909. 108 pp., 7 pls. 20c. Describes the drainage basins; gives results of observations at gaging stations; discusses the water supplies of the ditch and pipe lines and possibilities of hydraulic development. - *229. The disinfection of sewage and sewage filter effluents, with a chapter on the putrescibility and stability of sewage effluents, by E. B. Phelps. 1909. 91 pp., 1 pl. 15c. Scope indicated by title. - *234. Papers on the conservation of water resources. 1909. 96 pp., 2 pls. 15c. Contains the following papers, whose scope is indicated by their titles: Distribution of rainfall, by Henry Gannett; Floods, by M. O. Leighton; Developed water powers, compiled under the direction of W. M. Steuart, with discussion by M. O. Leighton; Undeveloped water powers, by M. O. Leighton; Irrigation, by F. H. Newell; Underground waters, by W. C. Mendenhall; Denudation, by R. B. Dole and Herman Stabler; Control of catchment areas, by H. N. Parker. - *235. The purification of some textile and other factory wastes, by Herman Stabler and G. H. Pratt. 1909. 76 pp. 10c. Discusses waste waters from wool scouring, bleaching, and dyeing cotton yarn, bleaching cotton piece goods, and manufacture of oleomargarine, fertilizer, and glue. - 236. The quality of surface waters in the United States, Part I.—Analyses of waters east of the one hundredth meridian, by R. B. Dole. 1909. 123 pp. 10c. Describes collection of samples, method of examination, preparation of solutions, accuracy of estimates, and expression of analytical results. - 238. The public utility of water powers and their governmental regulation, by René Tavernier and M. O. Leighton. 1910. 161 pp. 15c. Piscusses hydraulic power and irrigation, French, Italian, and Swiss legislation relative to the Discusses hydraulic power and irrigation, French, Italian, and Swiss legislation relative to the development of water powers, and laws proposed in the French parliament; reviews work of bureau of hydraulics and agricultural improvement of the French department of agriculture, and gives resume of Federal and State water-power legislation in the United States. - 255. Underground waters for farm use, by M. L. Fuller. 1910. 58 pp., 17 pls. 15c. Discusses rocks as sources of water supply and the relative safety of supplies from different materials; springs, and their protection; open or dug and deep wells, their location, yield, relative cost, protection, and safety; advantages and disadvantages of cisterns and combination wells and cisterns. - 257. Well-drilling methods, by Isaiah Bowman. 1911. 139 pp., 4 pls. 15c. Discusses amount, distribution, and disposal of rainfall, water-bearing rocks, amount of underground water and artesian
conditions, and oil and gas bearing formations; gives history of well drilling in Asia, Europe, and the United States; describes in detail the various methods and the amachinery used; discusses loss of tools and geologic difficulties; contamination of well waters and methods of prevention; tests of capacity and measurement of depth; and costs of sinking wells. - *258. Underground-water papers, 1910, by M. L. Fuller, F. G. Clapp, G. C. Matson, Samuel Sanford, and H. C. Wolff. 1911. 123 pp., 2 pls. 15c. Contains the following papers (scope indicated by titles) of general interest: Drainage by wells, by M. L. Fuller. Freezing of wells and related phenomena, by M. L. Fuller. Pollution of underground waters in limestone, by G. C. Matson. Protection of shallow wells in sandy deposits, by M. L. Fuller. Magnetic wells, by M. L. Fuller. 259. The underground waters of southwestern Ohio, by M. L. Fuller and F. G. Clapp, with a discussion of the chemical character of the waters, by R. B. Dole. 1912. 228 pp., 9 pls. 35c. Describes the topography, climate, and geology of the region, the water-bearing formations, the source, mode of occurrence, and head of the waters, and municipal supplies; gives details by counties; discusses in supplement, under chemical character, method of analysis and expression of results, mineral constituents, effect of the constituents on waters for domestic, industrial, or medicinal uses, methods of purification, and chemical composition; many analyses and field assays. The matter in the supplement was also published in Water-Supply Paper 254 (The underground waters of north-central Indiana). 274. Some stream waters of the western United States, with chapters on sediment carried by the Rio Grande and the industrial application of water analyses, by Herman Stabler. 1911. 188 pp. 15c. Describes collection of samples, plan of analytical work, and methods of analyses; discusses soap-consuming power of waters, water softening, boiler waters, and water for irrigation. - 280. Gaging stations maintained by the United States Geological Survey, 1888–1910, and Survey publications relating to water resources, compiled by B. D. Wood. 1912. 102 pp. 10c. - 314. Surface water supply of Seward Peninsula, Alaska, by F. F. Henshaw and G. L. Parker, with a sketch of the geography and geology by P. S. Smith, and a description of methods of placer mining by A. H. Brooks. 1913. 317 pp., 17 pls. 45c. Contains results of work at gaging stations. - 315. The purification of public water supplies, by G. A. Johnson. 1913. 84 pp., 8 pls. 10c. Discusses ground, lake, and river waters as public supplies, development of waterworks systems in the United States, water consumption, and typhoid fever; describes methods of filtration and sterilization of water and municipal water softening. Water resources of Hawaii, 1909–1911, by W. F. Martin and C. H. Pierce. 1913. 552 pp., 15 pls. 50c. Describes the general features of the islands and gives results of measurements of streams and of observations of rainfall and evaporation; contains gazetteer and a glossary of Hawaiian words in common use. 334. The Ohio Valley flood of March-April, 1913 (including comparisons with some earlier floods), by A. H. Horton and H. J. Jackson. 1913. 96 pp., 22 pls. 20c. Although relating specifically to floods in the Ohio Valley, this report discusses also the causes of floods and the prevention of damage by floods. - 336. Water resources of Hawaii, 1912, by C. H. Pierce and G. K. Larrison. 1914. 392 pp. 50c. - Contains results of stream measurements on the islands in 1912. - 337. The effects of ice on stream flow, by William Glenn Hoyt. 1913. 77 pp., 7 pls. 15c. Discusses methods of measuring the winter flow of streams. 342. Surface water supply of the Yukon-Tanana region, Alaska, by C. E. Ellsworth and R. W. Davenport. 1915. 343 pp., 13 pls. 45c. Presents results of six years' observations of the water supply of the Yukon-Tanana region, discusses climate and precipitation, and gives station records. *345. Contributions to the hydrology of the United States, 1914. N. C. Grover, chief hydraulic engineer. 1915. 225 pp., 17 pls. 30c. *(e) A method of determining the daily discharge of rivers of variable slope, by M. R. Hall, W. E. Hall, and C. H. Pierce, pp. 53-65. 5c. Scope indicated by title. (f) The discharge of Yukon River at Eagle, Alaska, by E. A. Porter and R. W. Davenport, pp. 67-77, pls. 4 and 5. 5c. Describes briefly the location and size of the Yukon basin, the climatic conditions in the basin, and methods of collecting hydrometric data; compares run-off with precipitation, and gives table showing the discharge of some of the large rivers in the United States as compared with the discharge of the Yukon and the Nile. . 364. Water analyses from the laboratory of the United States Geological Survey, tabulated by F. W. Clarke, chief chemist. 1914. 40 pp. 5c. Contains analyses of waters from rivers, lakes, wells, and springs in various parts of the United States, including analyses of the geyser water of Yellowstone National Park, hot springs in Montana, brines from Death Valley, water from the Gulf of Mexico, and mine waters from Tennessee, Michigan, Missouri and Oklahoma, Montana, Colorado and Utah, Nevada and Arizona, and California. - 371. Equipment for current-meter gaging stations, by G. J. Lyon. 1915. 64 pp., 37 pls. 20c. - Describes methods of installing recording and other gages and of constructing gage wells, shelters, and structures for making discharge measurements and artificial controls. - 372. A water-power reconnaissance in south-central Alaska, by C. E. Ellsworth and R. W. Davenport, with a section on southeastern Alaska, by J. C. Hoyt. 1915. 173 pp., 22 pls. 20c. - 373. Water resources of Hawaii, 1913, by G. K. Larrison. 1915. 190 pp. 20c. Contains results of stream measurements on the islands in 1913. - 375. Contributions to the hydrology of the United States, 1915. N. C. Grover, chief hydraulic engineer. 1916. 181 pp., 9 pls. - (c) Relation of stream gaging to the science of hydraulies, by C. H. Pierce and R. W. Davenport, pp. 77-84. - (e) A method for correcting river discharge for changing stage, by B. E. Jones, pp. 117-130. - (f) Conditions requiring the use of automatic gages in obtaining stream-flow records, by C. H. Pierce, pp. 131-139. - 400. Contributions to the hydrology of the United States, 1916. N. C. Grover, chief hydraulic engineer. - (a) The people's interest in water-power resources, by G. O. Smith, pp. 1-8. - (c) The measurement of silt-laden streams, by Raymond C. Pierce, pp. 39-51. - (d) Accuracy of stream-flow data, by N. C. Grover and J. C. Hoyt, pp. 53-59. #### PROFESSIONAL PAPERS. Denudation and erosion in the southern Appalachian region and the Monon-gahela basin, by L. C. Glenn. 1911. 137 pp., 21 pls. 35c. Describes the topography, geology, drainage, forests, climate, population, and transportation facilities of the region, the relation of agriculture, lumbering, mining, and power development to erosion and denudation, and the nature, effects, and remedies of erosion; gives details of conditions in Holston, Nolichucky, French Broad, Little Tennessee, and Hiwassee river basins, along Tennessee River proper, and in the basins of the Coosa-Alabama system, Chattahoochee, Savannah, Saluda, Broad, Catawba, Yadkin, New, and Monongahela rivers. 86. The transportation of débris by running water, by G. K. Gilbert, based on experiments made with the assistance of E. C. Murphy. 1914. 263 pp., 3 pls. 70c. The results of an investigation which was carried on in a specially equipped laboratory at Berkeley, Cal., and was undertaken for the purpose of learning "the laws which control the movement of bed load and especially to determine how the quantity of load is related to the stream's slope and discharge and to the degree of comminution of the débris." A highly technical report. #### BULLETINS. *32. Lists and analyses of the mineral springs of the United States (a preliminary study), by A. C. Peale. 1886. 235 pp. Defines mineral waters, lists the springs by States, and gives tables of analyses so far as available. - 264. Record of deep well drilling for 1904, by M. L. Fuller, E. F. Lines, and A. C. Veatch. 1905. 106 pp. 10c. - *298. Record of deep-well drilling for 1905, by M. L. Fuller and Samuel Sanford. 1906. 299 pp. 25c. Bulletins 264 and 298 discuss the importance of accurate well records to the driller, to owners of oil, gas, and water wells, and to the geologist; describes the general methods of work; gives tabulated records of wells by States, and detailed records selected as affording valuable stratigraphic information. *319. Summary of the controlling factors of artesian flows, by Myron L. Fuller. 1908. 44 pp., 7 pls. 10c. Describes underground reservoirs, the sources of underground waters, the confining agents, the primary and modifying factors of artesian circulation, the essential and modifying factors of artesian flow, and typical artesian systems. *479. The geochemical interpretation of water analyses, by Chase Palmer. 1911. 31 pp. 5c. Discusses the expression of chemical analyses, the chemical character of water and the properties of natural waters; gives a classification of waters based on property values and reacting values, and discusses the character of the waters of certain rivers as interpreted directly from the results of analyses; discusses also the relation of water properties to geologic formations, silica in river water, and the character of the water of the Mississippi and the Great Lakes and St. Lawrence River as indicated by chemical analyses. #### ANNUAL REPORTS. *Fifth Annual Report of the United States Geological Survey, 1883-84, J. W. Powell, Director. 1885. xxxvi, 469 pp., 58 pls. \$2.25. Contains: *The requisite and qualifying conditions of artesian wells, by T. C. Chamberlin, pp. 125 to 173, Pl. 21. Scope indicated by title. *Twelfth Annual Report of the United States Geological
Survey, 1890–91, J. W. Powell, Director. 1891. 2 parts. Pt. II—Irrigation, xviii, 576 pp., 93 pls. \$2. Contains: *Irrigation in India, by H. M. Wilson, pp. 363-561, Pls. 107 to 146. See Water-supply Paper 87. Thirteenth Annual Report of the United States Geological Survey, 1891–92, J. W. Powell, Director. 1892. (Pts. II and III, 1893.) 3 parts. Pt. III—Irrigation, xi, 486 pp., 77 pls. \$1.85. Contains: *American irrigation engineering, by H. M. Wilson, C. E., pp. 101-349, Pls. 111 to 146. Discusses the economic aspects of irrigation, alkaline drainage, silt, and sedimentation; gives brief history and legislation; describes canals; discusses water storage at reservoirs of the California and other projects, subsurface sources of supply, pumping, and subirrigation. Fourteenth Annual Report of the United States Geological Survey, 1892-93, J. W. Powell, Director, 1893. (Pt. II, 1894.) 2 parts. *Pt. II—Accompanying papers, xx, 597 pp., 73 pls. \$2.10. Contains: *The potable waters of the eastern United States, by W J McGee, pp. 1 to 47. Discusses cistern water, stream waters, and ground waters, including mineral springs and artesian wells. *Natural mineral waters of the United States, by A. C. Peale, pp. 49-88, Pls. 3 and 4. Discusses the origin and flow of mineral springs, the source of mineralization, thermal springs, the chemical composition and analysis of spring waters, geographic distribution, and the utilization of mineral waters; gives a list of American mineral spring resorts; contains also some analyses. Nineteenth Annual Report of the United States Geological Survey, 1897-98, Charles D. Walcott, Director. 1898. (Parts II, III, and V, 1899.) 6 parts in 7 vols. and separate case for maps with Pt. V. *Pt. II—Papers chiefly of a theoretic nature, v, 958 pp., 172 pls. \$2.65. Contains: *Principles and conditions of the movements of ground water, by F. H. King, pp. 59-294, Pls. 6 to 16. Discusses the amount of water stored in sandstone, in soil, and in other rocks; the depth to which ground water penetrates; gravitational, thermal, and capillary movements of ground waters, and the configuration of the ground-water surface; gives the results of experimental investigations on the flow of air and water through rigid, porous media and through sands, sandstones, and silts; discusses results obtained by other investigators, and summaizes results of observations; discusses also rate of flow of water through sand and rock, the growth of rivers, rate of filtration through soil, interference of wells, etc. *Theoretical investigation of the motion of ground waters, by C. S. Slichter, pp. 295-384, Pl. 17. Scope indicated by title. Twentieth Annual Report of the United States Geological Survey, 1898-99, Charles D. Walcott, Director. 1899. (Parts II, III, IV, V, and VII, 1900.) 7 parts in 8 vols. and separate case of maps with Pt. V. *Pt. IV—Hydrography, vii, 660 pp., 75 pls. \$1.40. Contains: *Hydrography of Nicaragua, by A. P. Davis, pp. 563-637, Pls. 64 to 75. Describes the topographic features of the boundary, the lake basin, and Rio San Juan; gives a brief résumé of the boundary dispute; discusses rainfall, temperature, and relative humidity, evaporation, resources, and productions, the ship, railway and canal projects; gives the history of the investigations by the Canal Commission, and results of measurements on the Rio Grande, on streams tributary to Lake Nicaragua, and on Rio San Juan and its tributaries. Twenty-second Annual Report of the United States Geological Survey, 1900–1901, Charles D. Walcott, Director. 1901. (Parts III and IV, 1902.) 4 parts. Pt. IV—Hydrography, 690 pp., 65 pls. \$2.20. Contains: *Hydrography of the American Isthmus, by A. P. Davis, pp. 507-630, Pls. 37 to 50. Describes the physiography, temperature, rainfall, and winds of Central America; discusses the hydrography of the Nicaragua Canal route and the Panama Canal route; gives estimated monthly discharges of many of the streams, and rainfall and evaporation tables at various points. ## INDEX BY AREAS AND SUBJECTS. [A=Annual Reports; M=Monograph; B=Bulletin; P=Professional Paper; W=Water-Supply Paper; GF=Geologic folio. For titles see preceding pages.] Artesian waters: Essential conditions...... A 5; B 319; P 44; W 67, 114 Chemical analyses: ² Methods and interpretation.... W 151, 236, 259, 274, 364; B 479 Connecticut: Quality of waters; pollution.................... W 79, 144, 232, 374, 397 Surface waters..... W 162 Underground waters...... W 57, 102, 110, 149, 232, 374, 397; B 264, 298 Conservation. W 234, 400a Cuba: Surface, underground, and quality of waters...... W 110 Débris investigation P 86 Delaware: Quality of waters...... W 258; B 138 Underground waters..... W 57, 114, 149; B 138, 298; GF 137,162 District of Columbia: Quality of waters; pollution........... W 192, 236; B 138 Surface waters...... W 162, 192 Underground waters...... W 57, 114, 149; B 138; GF 70, 152 110, 143, 150, 180, 187, 200, 257, 337, 345e, 371, 375c, e, f, 400c, 400d Underground waters..... W 122 Maine: Quality of waters; pollution......... W 144, 198, 223, 236, 258; GF 149, 158 Surface waters...... A 6; W 69, 162, 198, 279 Underground waters..... W 57, 102, 114, 145, 149, 223, 258; B 264, 298; GF 149, 158, 192 Maryland: Quality of waters; pollution, etc.................. W 145, 192, 236, 258 Surface waters..... W 162, 192 Underground waters...... W 57, 114, 145, 149; B 138, 298; GF 13, 23, 70, 136, 137, 152, 160, 182 Underground waters...... W 102, 110, 114, 149; B 298 Lists..... B 32; W 114 Motions of ground waters...... A 19, ii; B 319; W 67, 110, 140, 155 Underground waters...... W 61, 102, 114, 145, 149; B 264, 298 ¹ Many of the reports contain brief subject bibliographies. See abstracts. ² Many analyses of river, spring, and well waters are scattered through publications, as noted in abstracts. XXXII | New Jersey: Quality of waters; pollution | W 79, | |---|--| | . 11 | 10, 236, 258; B 138; GF 137, 157, 162, 167 | | Surface waters | W 79, 88, 92, 110, 162; GF 191 | | | W 61, | | 110. 114. 149: B 138. 2 | 64, 298; GF 83, 137, 157, 161, 162, 167, 191 | | New York: Quality of waters; pollution, etc. | | | | W 24, 25, 44, 76, 110, 147, 162; P 44 | | | W 57, 61, | | | 5; GF 83, 157, 169; P 44; B 138, 264, 298 | | Nicaragua: Surface waters | | | Panama: Surface waters | | | Pennsylvania: Quality of waters; pollution. | | | | 6, 108, 110, 145, 236; GF 162, 167, 170, 189 | | Surface waters W 108 | 5, 109, 110, 147, 162; GF 160, 162, 167, 189 | | Underground waters | W 61, | | 106, 110, 114, 145, 1 | 49; GF 160, 162, 167, 170, 189; B 264, 298 | | Pollution: By industrial wastes | | | | W 72, 79, 194 | | | W 103, 152 | | | W, 144, 160 | | Profiles of rivers | | | Puerto Rico: Surface waters and irrigation | W 32** | | Rhode Island: Quality of waters; pollution | W 144, 149 | | Underground waters | W 61, 102, 114; B 264, 298 | | River profiles | W 44, 115 | | Sanitation: quality of waters; pollution; sewas | ge irrigation W 3, 22, | | 72, 79, 103, | 110, 113, 114, 144, 145, 152, 160, 179, 185, | | | 2, 194, 198, 226, 229, 235, 236, 255, 258, 315 | | Sewage disposal and purification | | | Underground waters: Legal aspects | | | | W 114, 255, 257 | | | | | Vermont: Quality of waters; pollution | | | Surface waters | W 424 | | | W 102, 110, 114, 149; B 298 | | Virginia: Quality of waters; pollution, etc | | | | A 10 i, W 162, 192 | | Underground waters | W 61, 114, 149, 258; B 138, | | | 264, 298; GF 13, 23, 70, 136 | | West Virginia: Quality of waters; pollution | | | | W 162, 192 | | | W 61, 145, 149; GF 160 | | Windmill papers | W 1. 8. 20. 41. 42 | ## INDEX OF STREAMS. | | Page. | I | Page. | |------------------------------------|--------------|-----------------------------------|------------| | Allagash River, Maine | VII | Dead River, Maine | VIII | | Alplaus Kill, N. Y | XII | Deer Creek, Md. | XIII | | Ammonoosuc River, N. H | x | Deerfield River, Mass | · x | | Androscoggin River, Maine, N. H | ıx | Delaware River, N. J., N. Y | XIII | | Androscoggin River, Little, Maine. | IX | Delaware River, East Branch, N.Y. | XIII | | Antietam Creek, Md | XIV | Delaware River, West Branch, | | | Aroostook River, Maine | VII | N. Y | XIII | | Ashuelot River, N. H | x | Delaware & Hudson Canal, diver- | | | Auburn Lake, Maine | IX | sion to | XII | | Batten Kill, N. Y | X1 | East Branch or Fork. See name of | | | Beaver Kill, N. Y | XIII | main stream. | | | Blackstone River, R. I | IX | East Canada Creek, N. Y | XII | | Borden Brook, Mass | \mathbf{x} | Eaton Brook, N. Y | хш | | Branch Lake, Maine | VIII | Elk Run, Va | XIV | | Branch Lake Stream, Maine | vIII | Esopus Creek, N. Y | ХII | | Branch River, R. I | IX | Farmington River, Mass | x | | Broad Creek, Md | хıп | Fish Creek, N. Y. | ХI | | Burnshirt River, Mass | · x | Fishkill Creek, N. Y | XII | | Byram River, Conn | ХI | Fish River, Maine | VII | | Byram River, East Branch, Conn | XI | Foundry Brook, N. Y | XII | | Byram River, Middle Branch, | | Georges Creek, Md | XIV | | Conn | ХI | Goose Creek, Va | XIV | | Byram River, West Branch, Conn | ХI | Graefenberg Creek, N. Y | ХII | | Canada Creek, East, N. Y | XII | Green Lake, Maine | VIII | | Canada Creek, West, N. Y | XII | Green Lake Stream, Maine | VIII | | Caroga Creek, N. Y | XII | Gunpowder Falls, Md | XIII | | Carrabassett River, Maine | VIII | Gunpowder Falls, Little, Md | XIII | | Catskill Creek, N. Y | ХII | Hawksbill Creek, Va | XIV | | Cayadutta Creek, N. Y | ХII | Hoosic River, N. Y | XI. | | Cayuta Creek, N. Y | XIII | Housatonic River, Conn., Mass | x | | Cedar River, N. Y | ХI | Hudson, River, N. Y | 31 | | Charles River, Mass | IХ | Indian Lake reservoir, N. Y | ŢΙ | | Chemung River, N. Y | XIII | Indian River, N. Y | IK | | Chenango River, N. Y | хш | Israel River, N. H | x | | Cobbosseecontee Lake, Maine | VIII | Johnson Brook, N. Y
 IK | | Cobbosseecontee Stream, Maine | VIII | Juniata River, Pa | XIII | | Cochituate Lake, Mass | IV | Kenduskeag Stream, Maine | VIII | | Cold Stream, Maine | VIII | Kennebec River, Maine | VIII | | Cold Stream Pond, Maine | VIII | Kinderhook Creek, N. Y | XII | | Concord River, Mass | IV | Lehigh River, Pa | XII | | Connecticut River, Mass., N. H., | | Lewis Creek, Va | XIV | | Conn | x | Little Androscoggin River, Maine. | IK | | Contoocook River, N. H | IX | Little Gunpowder Falls, Md | XII | | Cooks Creek, Va | xIV | Little River, N. H | Ĭ | | Croton River, N. Y | XII | Machias River, Maine | VIII | | (XXXIV) | | | 4 | | , | Page. | 1 • | Page. | |-----------------------------------|-------|---|------------| | Madawaska River, Maine | , VII | Phillips Łake outlet, Maine | VIII | | Madison Brook, N. Y | XIII | Piscataquis River, Maine | VIII | | Magalloway River, Maine | IX | Pomperaug River, Conn | x | | Matfield River, Mass | IX | Pompton River, N. J | XII | | Mattawamkeag River, Maine | VIII | Potomac River, D. C., Md., W. Va. | XIV | | Merrimack River, Mass., N. H | ıx | Potomac River, North Branch, | | | Messalonskee Stream, Maine | VIII | Md., W. Va | XIV | | Mianus River, Conn., N. Y | ХI | Potomac River, South Branch, W. | | | Middle Branch or Fork. See name | | Va | XIV | | of main stream. | | Presumpscot River, Maine | IX | | Middle River, Va | xiv | Providence River, R. I | ΙX | | Millers River, Mass | x | Quaboag River, Mass | x | | Millstone River, N. J | хII | Quacken Kill, N. Y | XII | | Mohawk River, N. Y | ХI | Quinebaug River, Conn | x | | Monocacy River, Md | xiv | Ramapo River, N. J | XII | | Mongaup River, N. Y | XIII | Rangeley Lake, Maine | IX | | Moose River, Maine | VIII | Rappahannock River, Va | XIV | | Moosehead Lake, Maine | VIII | Raritan River, N. J | XII | | Moss Brook, Mass | x | Raritan River, North Branch, N. J. | XII | | Musconetcong River, N. J | XIII | Raritan River, South Branch, N. J. | XII | | Mystic Lake, Mass | IX | Reeds Brook, Maine | VIII | | Nail Creek, N. Y | ХI | Reels Creek, N. Y | XI | | Nashua River, Mass | ıx | Roach River, Maine | VIII | | Nashua River, South Branch, Mass. | IX | Rockaway River, N. J | XII | | Neversink River, N. Y | хш | Rock Creek, D. C | XIV | | Neshaminy Creek, Pa | XIII | Rondout Creek, N. Y | XII | | Ninemile Creek, N. Y | ХI | Sacandaga River, N. Y | XI | | Normans Kill, N. Y | XII | Sacandaga River, West Branch, | | | North River, Va | XIV | N. Y. | ХI | | Occoquan Creek, Va | XIV | Saco River, Maine, N.H | IX | | Octoraro Creek, Md | XIII | St. Croix River, Maine | VII | | Opequan Creek, W. Va | XIV | St. Croix River, West Branch, | | | Oriskany Creek, N. Y | ХI | Maine | VII | | Orland River, Maine | VIII | St. Francis River, Maine | VII | | Passadumkeag Stream, Maine | VIII | St. George River, Maine | VIII | | Pastage Creek, Va | xıv | St. John River, Maine | VII | | Passaic River, N. J | XII* | Salmon River, Conn | · x | | Passumpsic River, Vt | x | Sandy River, Maine | VIII | | Patapsco River, Md | xiv | Saquoit Creek, N. Y | ХI | | Patuxent River, Md | XIV | Satucket River, Mass | IX | | Paulins Kill, N. J | XIII | Savage River, Md | XIV | | Pawcatuck River, R. I | x | Schoharie Creek, N. Y | XII | | Pawtuxet River, R. I | x | Schroon Lake, N. Y | XI | | Penigewasset River, N. H | ıx | Schroon River, N. Y | XI | | Penigewasset River, Middle | | Schuylkill River, Pa | XIII | | Branch, N. H | ıх | Sebago Lake outlet, Maine | ĮХ | | Perobscot River, Maine | VIII | Seekonk River, Maine | VIII | | Perobscot River, East Branch, | · - | Seekonk River, R. I
Shenandoah River, Va | XIV | | Naine | viir | Shenandoah River, North Fork, | ÆL V | | Perobscot River, West Branch, | _ | Va | xiv | | Naine | VIII | Shenandoah River, South Fork, | | | Perkiomen Creek, Pa | XIII | Va | XIV | ## INDEX OF STREAMS. | , | Page. | | Page. | |----------------------------------|-------|-----------------------------------|-------| | Shetucket River, Conn | x | Union, River, West Branch, Maine. | VIII | | South Branch. See name of main | | Wallkill River, N. Y | XII | | stream. | | Wanaque River, N. J | XII | | South River, Va | XIV | Wappinger Creek, N. Y | XII | | Souhegan River, N. H | IX | Ware River, Mass | x | | Starch Factory Creek, N. Y | XII | Webb Brook, Maine | VIII | | Sudbury River, Mass | IX | West Canada Creek, N. Y | XII | | Suncook River, N. H | IX | Westfield Little River, Mass | x | | Susquehanna River, N. Y., Pa | XIII | Westfield River, Mass | x | | Susquehanna River, West Branch, | | Westfield River, Middle Branch, | | | Pa | XIII | Mass | x | | Swift River, Mass | x | White River, Vt | X | | Sylvan Glen Creek, N. Y | XII | Wills Creek, Md | XIV | | Tenmile River, N. Y | x | Winnipesaukee Lake, N. H | IX | | Tenmile River, R. I | IX | Wissahickon Creek, Pa | XIII | | Thames River, Conn | x | Wood River, R. I | x | | Tioughnioga River, N. Y | XIII | Woonasquatucket River, R. I | ıx | | Tohickon Creek, Pa | XIII | Zealand River, N. H | x | | Tuscarora Creek, W. Va | XIV | West Branch or Fork. See name | | | Union River, Maine | VIII | of main stream. | | | Union River, East Branch, Maine. | VIII | | |